Lösung zu Aviatik 2012/2: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Zeile 4: Zeile 4:
#zu pumpende Entropie <math>S_{WP}=\frac{W_{th}}{T_{oben}}</math> = 1.30 kJ/K; Pumparbeit <math>W=\Delta T_{WP}S_{WP}</math> = 51.9 kJ
#zu pumpende Entropie <math>S_{WP}=\frac{W_{th}}{T_{oben}}</math> = 1.30 kJ/K; Pumparbeit <math>W=\Delta T_{WP}S_{WP}</math> = 51.9 kJ
#zwischen Wärmepumpe und Wasser produzierte Entropie: <math>S_{prod}=\Delta S-S_{WP}</math> = 98 J/K
#zwischen Wärmepumpe und Wasser produzierte Entropie: <math>S_{prod}=\Delta S-S_{WP}</math> = 98 J/K
#aufzuwendende Energie ist gleich Energiezunahme im Wasser minus Energie aus der Umgebung: <math>S_{Umg}=\Delta S</math>; <math>W_{Umg}=S\cdot T_{Umg}</math>; <math>W_{rev}=\Delta H-W{Umg}</math> = 24.2 kJ
#aufzuwendende Energie ist gleich Energiezunahme im Wasser minus Energie aus der Umgebung: <math>S_{Umg}=\Delta S</math>; <math>W_{Umg}=S\cdot T_{Umg}</math>; <math>W_{rev}=\Delta H-W_{Umg}</math> = 24.2 kJ


::<videoflash>_yoCV9W1UZg|649|360</videoflash>
::<videoflash>_yoCV9W1UZg|649|360</videoflash>

Version vom 28. Juni 2013, 04:19 Uhr

Lösung 1

  1. Änderung von Enthalpie und Entropie im System: [math]W_{th}=\Delta H=mc\Delta T[/math] = 419 kJ; [math]\Delta S=mc\ln\left(\frac{T_2}{T_1}\right)[/math] = 1.40 kJ/K
  2. zu pumpende Entropie [math]S_{WP}=\frac{W_{th}}{T_{oben}}[/math] = 1.30 kJ/K; Pumparbeit [math]W=\Delta T_{WP}S_{WP}[/math] = 51.9 kJ
  3. zwischen Wärmepumpe und Wasser produzierte Entropie: [math]S_{prod}=\Delta S-S_{WP}[/math] = 98 J/K
  4. aufzuwendende Energie ist gleich Energiezunahme im Wasser minus Energie aus der Umgebung: [math]S_{Umg}=\Delta S[/math]; [math]W_{Umg}=S\cdot T_{Umg}[/math]; [math]W_{rev}=\Delta H-W_{Umg}[/math] = 24.2 kJ
<videoflash>_yoCV9W1UZg|649|360</videoflash>

Lösung 2

  1. Diesel-Zyklus
  2. [math]p_2=p_1\left(\frac{V_1}{V_2}\right)^\kappa[/math] = 66.3 bar; [math]T_2=T_1\left(\frac{V_1}{V_2}\right)^{\kappa-1}[/math] = 994 K;
  3. [math]T_3=T_2+\Delta T=T_2+\frac{\Delta H}{n\hat c_p}[/math] = 994 K + 759 K = 1853 K
  4. isobar Volumen 3 berechnen [math]V_3=V_2\frac{T_3}{T_2}[/math] = 0.0466 Liter; isentrop Temperatur vier berechnen [math]T_4=T_3\left(\frac{V_3}{V_4}\right)^{\kappa-1}[/math] = 717 K;isentrope Expansion: [math]\Delta W=W_{mech}=n\hat c_V\Delta T_{23}[/math] = -437 J;
<videoflash>Ru4QogH7-4k|649|360</videoflash>

Lösung 3

<videoflash>vBSPiEOwWO8|649|360</videoflash>

Lösung 4

<videoflash>WivYnwH52mk|649|360</videoflash>

Lösung 5

<videoflash>fSxWwfzmMwc|649|360</videoflash>fSxWwfzmMwc


Aufgabe