Lösung zu Langes Rohr: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 9: Zeile 9:
1. Im Rohr laufen zwei [[Prozessleistung|Prozesse]] ab, ein gravitativer und ein hydraulischer
1. Im Rohr laufen zwei [[Prozessleistung|Prozesse]] ab, ein gravitativer und ein hydraulischer


*Druckabfall im Gravitationsprozess: ''&Delta;p<sub>G</sub> = &rho; g &Delta; h'' = 0.292 bar
*Druckabfall im Gravitationsprozess: ''&Delta;p<sub>G</sub> = &rho; g &Delta; h'' = 850 kg/m<sup>3</sup> * 9.81 N/kg * 3.5 m = 0.292 bar


*Druckabfall im hydraulischen Prozess: ''&Delta;p<sub>H</sub> = R<sub>V1</sub> I<sub>V</sub>'' = 1.17 bar
*Druckabfall im hydraulischen Prozess: ''&Delta;p<sub>H</sub> = R<sub>V1</sub> I<sub>V</sub>'' = 9.36 10<sup>7</sup> Pas/m<sup>3</sup> * 1.25 l/s = 1.17 bar


*Totaler Druckabfall: ''&Delta;p<sub>tot</sub>'' = 1.46 bar
*Totaler Druckabfall: ''&Delta;p<sub>tot</sub> = &Delta;p<sub>G</sub> + &Delta;p<sub>H</sub>'' = 1.46 bar


2. Leistung des gravitativen und des hydraulischen Prozesses
2. Leistung des gravitativen und des hydraulischen Prozesses

Version vom 14. Juli 2009, 08:47 Uhr

In einem ersten Schritt muss untersucht werden, ob die Strömung laminar oder turbulent ist. Dazu berechnen wir den kritischen Volumenstrom:

[math]I_{V_{krit}}=\frac{R_V}{k}=\frac{\frac {128 \eta l}{\pi d^4}}{\lambda \frac {8 \varrho l}{\pi^2d^5}}=\frac{16\pi\eta d} {\lambda\varrho} = \frac{16\pi * 0.07 Pas * 0.026 m} {0.02 * 850 kg/m^3} = [/math] 5.38 l/s = 323 l/min

Dieser Wert, der mit λ = 0.02 gerechnet worden ist, liegt deutlich höher als die gegebene Volumenstromstärke von 75 l/min = 1.25 l/s. Folglich ist der Volumenstrom laminar und der Widerstand beträgt

[math]R_V=\frac{128 \eta l}{\pi d^4} = \frac{128 * 0.07 Pas * 15 m}{\pi (0.026 m)^4}[/math] = 9.36 107 Pas/m3

1. Im Rohr laufen zwei Prozesse ab, ein gravitativer und ein hydraulischer

  • Druckabfall im Gravitationsprozess: ΔpG = ρ g Δ h = 850 kg/m3 * 9.81 N/kg * 3.5 m = 0.292 bar
  • Druckabfall im hydraulischen Prozess: ΔpH = RV1 IV = 9.36 107 Pas/m3 * 1.25 l/s = 1.17 bar
  • Totaler Druckabfall: Δptot = ΔpG + ΔpH = 1.46 bar

2. Leistung des gravitativen und des hydraulischen Prozesses

  • PG = ΔpG IV = g Δ h Im = 36.5 W
  • Ptot = PG + Phyd = 182 W

3. Der Widerstand des 2. Rohres ist umgekehrt proportional zur 4. Potenz des Durchmessers; für parallele Widerstände werden ihre Kehrwerte addiert

  • RV2 = (d1 / d2)4 * RV1 = 3.28 108 Pas/m3
  • RV tot = 1 / ( 1/RV1 + 1/RV2 ) = 7.28 107 Pas/m3
  • IV tot = ΔpH / RV tot = 96.4 l/min = 1.61 l/s

Aufgabe