Lösung zu Langes Rohr: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 7: Zeile 7:
:<math>R_V=\frac{128 \eta l}{\pi d^4} = \frac{128 * 0.07 Pas * 15 m}{\pi (0.026 m)^4}</math> = 9.36 10<sup>7</sup> Pas/m<sup>3</sup>
:<math>R_V=\frac{128 \eta l}{\pi d^4} = \frac{128 * 0.07 Pas * 15 m}{\pi (0.026 m)^4}</math> = 9.36 10<sup>7</sup> Pas/m<sup>3</sup>


1. Im Rohr laufen zwei [[Prozessleistung|Prozesse]] ab, ein gravitativer und ein hydraulischer
1. Im Rohr laufen drei [[Prozessleistung|Prozesse]] ab, ein hydraulischer Prozess treibt einen gravitativen und einen dissipativen (thermischen) Prozess an. Dabei ist die dissipative Prozessleistung gleich gross wie das Podukt aus


*Druckabfall im Gravitationsprozess: ''&Delta;p<sub>G</sub> = &rho; g &Delta; h'' = 850 kg/m<sup>3</sup> * 9.81 N/kg * 3.5 m = 0.292 bar
*Gravitative Druckdifferenz im Gravitationsprozess: ''&Delta;p<sub>G</sub> = &rho; g &Delta; h'' = 850 kg/m<sup>3</sup> * 9.81 N/kg * 3.5 m = 0.292 bar


*Druckabfall im hydraulischen Prozess: ''&Delta;p<sub>H</sub> = R<sub>V1</sub> I<sub>V</sub>'' = 9.36 10<sup>7</sup> Pas/m<sup>3</sup> * 1.25 l/s = 1.17 bar
*Resistive Druckdifferenz im dissipativen Prozess: ''&Delta;p<sub>R</sub> = R<sub>V1</sub> I<sub>V</sub>'' = 9.36 10<sup>7</sup> Pas/m<sup>3</sup> * 1.25 l/s = 1.17 bar


*Totaler Druckabfall: ''&Delta;p<sub>tot</sub> = &Delta;p<sub>G</sub> + &Delta;p<sub>H</sub>'' = 1.46 bar
*Totale Druckdifferenz im hydraulischen Prozess: ''&Delta;p<sub>tot</sub> = &Delta; p<sub>G</sub> + &Delta; p <sub>R</sub>'' = 0.292 bar + 1.17 bar = 1.46 bar


2. Leistung des gravitativen und des hydraulischen Prozesses
2. Leistung des gravitativen und des hydraulischen Prozesses


*''P<sub>G</sub> = &Delta;p<sub>G</sub> I<sub>V</sub> = g &Delta; h I<sub>m</sub>'' = 9.81 N/kg * 3.5 m * 850 kg/m<sup>3</sup> * 1.25 l/s = 36.5 W
*''P<sub>G</sub> = &Delta;&phi;<sub>G</sub> I<sub>m</sub> = g &Delta;h &rho; I<sub>V</sub>'' = 9.81 N/kg * 3.5 m * 850 kg/m<sup>3</sup> * 1.25 l/s = 36.5 W


*''P<sub>hyd</sub> = &Delta;p<sub>H</sub> I<sub>V</sub> = R<sub>V1</sub> I<sub>V</sub><sup>2</sup>'' = 9.36 10<sup>7</sup> Pas/m<sup>3</sup> * (1.25 l/s)<sup>2</sup> = 146 W (diese [[Prozessleistung]] wird [[Dissipation|dissipiert]], d.h. das Öl heizt sich mit dieser Zuwachsrate an [[innere Energie|inneren Energie]] auf)
*''P<sub>diss</sub> = &Delta;p<sub>R</sub> I<sub>V</sub> = R<sub>V1</sub> I<sub>V</sub><sup>2</sup>'' = 9.36 10<sup>7</sup> Pas/m<sup>3</sup> * (1.25 l/s)<sup>2</sup> = 146 W (diese [[Prozessleistung]] wird [[Dissipation|dissipiert]], d.h. das Öl heizt sich mit dieser Zuwachsrate an [[innere Energie|inneren Energie]] auf)


*''P<sub>tot</sub> = P<sub>G</sub> + P<sub>hyd</sub>'' = 182 W
*''P<sub>hyd</sub> = P<sub>G</sub> + P<sub>diss</sub>'' = 182 W


3. Der Widerstand des 2. Rohres ist umgekehrt proportional zur 4. Potenz des Durchmessers; für parallele Widerstände werden ihre Kehrwerte addiert
3. Der Widerstand des 2. Rohres ist umgekehrt proportional zur 4. Potenz des Durchmessers; für parallele Widerstände werden ihre Kehrwerte addiert
Zeile 29: Zeile 29:
*''R<sub>V tot</sub> = 1 / ( 1/R<sub>V1</sub> + 1/R<sub>V2</sub> )'' = 7.28 10<sup>7</sup> Pas/m<sup>3</sup>
*''R<sub>V tot</sub> = 1 / ( 1/R<sub>V1</sub> + 1/R<sub>V2</sub> )'' = 7.28 10<sup>7</sup> Pas/m<sup>3</sup>


*''I<sub>V tot</sub> = &Delta;p<sub>H</sub> / R<sub>V tot</sub>'' = 96.4 l/min = 1.61 l/s
*''I<sub>V tot</sub> = &Delta;p<sub>R</sub> / R<sub>V tot</sub>'' = 96.4 l/min = 1.61 l/s


'''[[langes Rohr|Aufgabe]]'''
'''[[langes Rohr|Aufgabe]]'''

Version vom 8. Oktober 2009, 12:38 Uhr

In einem ersten Schritt muss untersucht werden, ob die Strömung laminar oder turbulent ist. Dazu berechnen wir den kritischen Volumenstrom:

[math]I_{V_{krit}}=\frac{R_V}{k}=\frac{\frac {128 \eta l}{\pi d^4}}{\lambda \frac {8 \varrho l}{\pi^2d^5}}=\frac{16\pi\eta d} {\lambda\varrho} = \frac{16\pi * 0.07 Pas * 0.026 m} {0.02 * 850 kg/m^3} = [/math] 5.38 l/s = 323 l/min

Dieser Wert, der mit λ = 0.02 gerechnet worden ist, liegt deutlich höher als die gegebene Volumenstromstärke von 75 l/min = 1.25 l/s. Folglich ist der Volumenstrom laminar und der Widerstand beträgt

[math]R_V=\frac{128 \eta l}{\pi d^4} = \frac{128 * 0.07 Pas * 15 m}{\pi (0.026 m)^4}[/math] = 9.36 107 Pas/m3

1. Im Rohr laufen drei Prozesse ab, ein hydraulischer Prozess treibt einen gravitativen und einen dissipativen (thermischen) Prozess an. Dabei ist die dissipative Prozessleistung gleich gross wie das Podukt aus

  • Gravitative Druckdifferenz im Gravitationsprozess: ΔpG = ρ g Δ h = 850 kg/m3 * 9.81 N/kg * 3.5 m = 0.292 bar
  • Resistive Druckdifferenz im dissipativen Prozess: ΔpR = RV1 IV = 9.36 107 Pas/m3 * 1.25 l/s = 1.17 bar
  • Totale Druckdifferenz im hydraulischen Prozess: Δptot = Δ pG + Δ p R = 0.292 bar + 1.17 bar = 1.46 bar

2. Leistung des gravitativen und des hydraulischen Prozesses

  • PG = ΔφG Im = g Δh ρ IV = 9.81 N/kg * 3.5 m * 850 kg/m3 * 1.25 l/s = 36.5 W
  • Phyd = PG + Pdiss = 182 W

3. Der Widerstand des 2. Rohres ist umgekehrt proportional zur 4. Potenz des Durchmessers; für parallele Widerstände werden ihre Kehrwerte addiert

  • RV2 = (d1 / d2)4 * RV1 = (0.026 m / 0.019 m)4 * 9.36 107 Pas/m3 = 3.28 108 Pas/m3
  • RV tot = 1 / ( 1/RV1 + 1/RV2 ) = 7.28 107 Pas/m3
  • IV tot = ΔpR / RV tot = 96.4 l/min = 1.61 l/s

Aufgabe