Lösung zu Aufgabe zu Federpendel: Unterschied zwischen den Versionen
Inhalt hinzugefügt Inhalt gelöscht
Keine Bearbeitungszusammenfassung |
Admin (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
Die Federkonstante ist gleich der Federkraft (Impulsstromstärke) geteilt durch Verformung <math>D=\frac{F_F}{\Delta s}</math> = 200 N/m |
Die Federkonstante ist gleich der Federkraft (Impulsstromstärke) geteilt durch Verformung <math>D=\frac{F_F}{\Delta s}</math> = 200 N/m |
||
#Aus <math>T=2\pi\sqrt{\frac{m}{D}}</math> folgt <math>m=\frac{T^2}{4\pi^2}D</math> = 3.125 kg |
#Aus <math>T=2\pi\sqrt{\frac{m}{D}}</math> folgt <math>m=\frac{T^2}{4\pi^2}D</math> = 3.125 kg |
||
#Nimmt man die positive ''z''-Richtung nach unten, kann die Schwingung mit folgender Funktion beschrieben werden <math>z(t)=\hat z\sin\left(\frac{2\pi}{T}t\right)</math>; setzt man hier die gewünschte Zeit von π/12 s ein, erhält man eine Elongation von 4.33 cm |
#Nimmt man die positive ''z''-Richtung nach unten, kann die Schwingung mit folgender Funktion beschrieben werden <math>z(t)=\hat z\sin\left(\frac{2\pi}{T}t\right)=\hat z\sin\left(\omega t\right)</math>; setzt man hier die gewünschte Zeit von π/12 s ein, erhält man eine Elongation von 4.33 cm |
||
#Die Geschwindigkeits-Zeit-Funktion gewinnt man durch Ableiten der Orts-Zeit-Funktion nach der Zeit <math>v(t)=\dot z(t) = \hat v\cos\left(\frac{2\pi}{T}t\right)</math> mit <math>\hat v=\frac{\hat z |
#Die Geschwindigkeits-Zeit-Funktion gewinnt man durch Ableiten der Orts-Zeit-Funktion nach der Zeit <math>v(t)=\dot z(t) = \hat v\cos\left(\frac{2\pi}{T}t\right)=\hat v\cos\left(\omega t\right)</math> mit <math>\hat v=\frac{2\pi}{T}\hat z=\omega \hat z</math>; setzt man hier die Zeit von π/12 s ein, erhält man eine Geschwindigkeit von -0.2 m/s (aufwärts). |
||
#Die Federkraft ist gleich <math>F_F=F_G+Dz</math> = 36.7 N |
#Die Federkraft ist gleich <math>F_F=F_G+Dz</math> = 36.7 N |
||
Aktuelle Version vom 24. Mai 2016, 14:57 Uhr
Die Federkonstante ist gleich der Federkraft (Impulsstromstärke) geteilt durch Verformung [math]D=\frac{F_F}{\Delta s}[/math] = 200 N/m
- Aus [math]T=2\pi\sqrt{\frac{m}{D}}[/math] folgt [math]m=\frac{T^2}{4\pi^2}D[/math] = 3.125 kg
- Nimmt man die positive z-Richtung nach unten, kann die Schwingung mit folgender Funktion beschrieben werden [math]z(t)=\hat z\sin\left(\frac{2\pi}{T}t\right)=\hat z\sin\left(\omega t\right)[/math]; setzt man hier die gewünschte Zeit von π/12 s ein, erhält man eine Elongation von 4.33 cm
- Die Geschwindigkeits-Zeit-Funktion gewinnt man durch Ableiten der Orts-Zeit-Funktion nach der Zeit [math]v(t)=\dot z(t) = \hat v\cos\left(\frac{2\pi}{T}t\right)=\hat v\cos\left(\omega t\right)[/math] mit [math]\hat v=\frac{2\pi}{T}\hat z=\omega \hat z[/math]; setzt man hier die Zeit von π/12 s ein, erhält man eine Geschwindigkeit von -0.2 m/s (aufwärts).
- Die Federkraft ist gleich [math]F_F=F_G+Dz[/math] = 36.7 N