Sputnik: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Zeile 13: Zeile 13:


==technische Daten==
==technische Daten==
[[Bild:Sputnik_R7.jpg|thumb|Trägerrakete R7]]Die Trägerrakete besteht aus einem Bündel von 5 Einzelraketen, wobei die mittlere grösser ist, länger brennt und als zweite Stufe dient. Alle Triebwerke (5 x 4 Haupttriebwerke und 12 Steuertriebwerke wurden aus Sicherheitsgründen beim Start gleichzeitig gezündet.
[[Bild:Sputnik_R7.jpg|thumb|Trägerrakete R7]]Die Trägerrakete besteht aus einem Bündel von 5 Einzelraketen, wobei die mittlere grösser ist, länger brennt und als zweite Stufe dient. Alle Triebwerke (5 x 4 Haupttriebwerke und 12 Steuertriebwerke) sind beim Start aus Sicherheitsgründen gleichzeitig gezündet worden.


'''1. Stufe:'''
'''1. Stufe:'''

Version vom 30. September 2007, 05:41 Uhr

Sputnik

Sputnik (russisch Спутник für Begleiter) ist von der Sowjetunion am 4. Oktober 1957 als erster künstlicher Satellit auf eine elliptische Umlaufbahn (Flughöhe zwischen 227 und 946 km über der Erdoberfläche) geschossen worden. Der Start von Sputnik 1 machte aller Welt klar, dass die Sowjetunion nun in der Lage war, mit ihren Raketen nicht nur „den Weltraum“ zu erreichen, sondern auch jeden Punkt auf der Erde. Die faktische oder auch nur scheinbare Überlegenheit sowjetischen Interkontinentalraketen gegenüber jenen der USA löste in der westlichen Welt ein Gefühl der Bedrohung aus (Sputnik-Schock).

Im Sommersemester 2007 haben Studierende des Studienganges Aviatik die Hintergründe recherchiert und den Start mit Hilfe eines systemdynamischen Werkzeuges simuliert.

Aufgabenstellung

Die Flugbahn von Sputnik 1 soll mit Hilfe der verfügbaren Daten simuliert werden. Gestartet werde am Äquator und die Umlaufbahn soll in die Äquatorialebene zu liegen kommen (zweidimensionale Bewegung). Die Erde ist als Bezugssystem zu nehmen.

Das Modell soll folgende Zusammenhänge möglichst korrekt abbilden:

technische Daten

Trägerrakete R7

Die Trägerrakete besteht aus einem Bündel von 5 Einzelraketen, wobei die mittlere grösser ist, länger brennt und als zweite Stufe dient. Alle Triebwerke (5 x 4 Haupttriebwerke und 12 Steuertriebwerke) sind beim Start aus Sicherheitsgründen gleichzeitig gezündet worden.

1. Stufe:

Triebwerk RD-107-8D74
Schub 4 x 790 kN
Startmasse 4 x 43'100 kg
Leermasse 4 x 3'500 kg
Brennzeit 120 s
spez. Impuls 2452 m/s (Meereshöhe)
spez. Impuls 3003 m/s (Vakuum)

2. Stufe:

Triebwerk RD-108-8D75
Schub 1 x 745 kN
Startmasse 1 x 95'300 kg
Leermasse 1 x 7'500 kg
Brennzeit 330 s
spez. Impuls 2364 m/s (Meereshöhe)
spez. Impuls 3021 m/s (Vakuum)

Haupttriebwerk

Treibstoff Kerosin
Oxidator Sauerstoff
Mischungsverhältnis 1 : 2.47
Turbopumpe 4000 kW
Brennkammerdruck 58.50 bar
Düsenmündungsdruck 0.39 bar

Modellannahmen

Die Bilanzgleichungen bilden die zentralen Teile des Modells

  • x-Impulsbilanz bezüglich der ganzen Rakete
  • y-Impulsbilanz bezüglich der ganzen Rakete
  • Massenbilanz 1. Stufe
  • Massenbilanz 2. Stufe

Als weitere Zustandsgrössen (Bestandesgrösse, Stock) kommen noch die x- und die y-Koordinate dazu.

Impulsströme

Die Rakete tauscht auf drei Arten Impuls mit der Umgebung aus

Im rotierenden Bezugssystem darf die Wirkung des (im Sinne von Albert Einstein verallgemeinerten) Gravitationsfeldes in drei Teile zerlegt werden

Gravitations- und Zentrifugalkraft können zum statischen Teil der Gravitationskraft zusammen gefasst werden. Die Corioliskraft wirkt nur auf bewegte Körper und steht senkrecht zur Geschwindigkeit der Rakete.

Luftwiderstand

In weniger als einer Minute ist die Rakete schneller als der Schall und die für die Kreisbahn notwendige Endgeschwindigkeit von 7900 m/s ist etwa zehn mal schneller als eine Kanonenkugel. Ein Widerstandsmodell, das den Unter- und Überschallbereich realitätsnah nachbildet, übersteigt die Möglichkeiten eines einführenden Kurses in die Physik der dynamischen Systeme. Folglich wird der Widerstand mit Hilfe einer halbempirischen Formel beschrieben. Der Fehler, der dadurch entsteht, hält sich infolge der abnehmende Dichte der Atmosphäre klein.

Der Luftwiderstand ist gleich Dichte der kinetischen Energie der anströmenden Luft mal korrigierte Querschnittfläche

[math]F_W=\frac{\varrho}{2}v^2c_W A[/math]

wobei die Dichte der Luft (ρ) mit der Höhe abnimmt und der Widerstandsbeiwert (cW) nur geschätzt werden kann.

Orientierung der Rakete

Die entscheidende Grösse ist in diesem Modell ist die Orientierung der Rakete bzw. die Richtung des ausströmenden Gases. Üblicherweise beschreibt man die Lage der Rakete bezüglich eines lokalen Koordinatensystems (Ausrichtung nach Horizont und Zenit) und transformiert dann auf das Erdsystem. Weil in diesem Projekt die Ausrichtung der Rakete nur durch Versuch und Irrtum gefunden werden kann, wird die Richtung der Rakete mit dem Winkel zur x-Achse parametrisiert. Die Studierenden haben diese Winkel-Zeit-Funktion so lange variiert, bis ein Orbit erreicht worden ist, welcher dem wirklichen Verlauf der Sputnikbahn möglichst nahe kommt. In unzähligen Simulationsläufen mussten sie erleben, wie sensitiv das ganze Modell ist. Ein bisschen mehr oder weniger Treibstoff, eine leichte Veränderung in der Orientierung der Rakete oder eine andere Nutzlast können den Sputnik abstürzen oder zu hoch fliegen lassen.

Triebwerk

Der von den Gasen weggeführte Impulsstrom ist gleich spezifischer Impuls mal Volumenstrom oder gleich Geschwindigkeit der Gas bezüglich der Erde mal Massenstrom

[math]I_p=\varrho_p I_V=v_G I_m=(v-c)I_m[/math]

In der Literatur nennt man die Ausströmgeschwindigkeit c spezifischen Impuls. Dies trifft zu, solange die Rakete still steht, also zum Beispiel im Prüfstand. Die Ausströmgeschwindigkeit der Gase hängt von der Druckdifferenz zwischen Brennkammer und Öffnung der Düse ab. Weil der Druck der austretenden Gase von der Atmosphäre nach unten begrenzt wird, steigt die Ausströmgeschwindigkeit mit zunehmender Höhe an. Dieser Effekt ist in den meisten Fällen mittels einer linearen Funktion der Höhe beschrieben worden.

Modell

SD-Modell

Ergebnis