Impuls bei Kreisbewegung: Unterschied zwischen den Versionen
Admin (Diskussion | Beiträge) (→Auto) |
Admin (Diskussion | Beiträge) |
||
Zeile 103: | Zeile 103: | ||
Die kinetische Energie bestimmt somit den Zusammenhang zwischen resultierender Kraft und Kurvenradius. Weil diese Kraft nicht grösser als der Maximalwert der Haftreibung werden kann, sollte der Quotient aus kinetischer Energie und Kurvenradius einen bestimmten Wert nicht überschreiten. |
Die kinetische Energie bestimmt somit den Zusammenhang zwischen resultierender Kraft und Kurvenradius. Weil diese Kraft nicht grösser als der Maximalwert der Haftreibung werden kann, sollte der Quotient aus kinetischer Energie und Kurvenradius einen bestimmten Wert nicht überschreiten. |
||
===Kreispendel=== |
|||
===Flugzeug=== |
===Flugzeug=== |
||
Das Flugzeug kann Impuls nur mit dem [[Gravitationsfeld]] und der umgebenden Luft austauschen. Der Austausch mit dem Gravitationsfeld wird durch die Gewichtskraft beschrieben und die ist gleich [[Masse]] mal Gravitationsfeldstärke, hängt also von der momentanen Beladung des Flugzeuges ab. Der Impulsaustausch mit der Luft geschieht auf vielfältige Art. |
|||
===Satellit=== |
===Satellit=== |
Version vom 23. Oktober 2007, 05:48 Uhr
Eine Auto, ein Zug oder ein Flugzeug, das eine Kurve fährt bzw. fliegt, muss Impuls mit der Umgebung austauschen können, damit sich die Bewegungsrichtung ändert. Geht man von einer 90°-Kurve aus und legt die x-Achse in Richtung der Anfangsgeschwindigkeit, so bewegt sich das Objekt am Ende der Kurvenfahrt in Richtung der y-Achse. Folglich wird der gesamte x-Impuls abgegeben und gleich viel y-Impuls aufgenommen. Zugleich bleibt die kinetische Energie erhalten.
Missverständnisse
Im Zusammenhang mit der Kreisbewegung treten zwei Missverständnisse auf, die kaum aus der Welt zu schaffen sind
- die Kreisbewegung wird mit der Rotation verwechselt
- eine Zentrifugalkraft soll den Körper nach aussen ziehen
Zum ersten Punkt ist zu sagen, dass Fahrzeuge auf der Kreisbahn oft eine synchrone Rotation ausführen, ihre Drehbewegung der Verschiebung auf dem Kreis anpassen. Andere Objekte, wie ein Satellit oder die Gondel eines Riesenrades, rotieren dagegen unabhängig von der Kreisbewegung; Translation und Rotation sind völlig entkoppelt. Der zweite Punkt ist vielschichtiger. Unter einer Zentrifugalkraft versteht man in der Physik eine gravitationsähnliche Trägheitskraft, die nur in einem rotierenden Bezugssystem eingeführt werden darf: der Passagier in der rotierenden Kabine muss eine Zentrifugalkraft einführen, der aussen stehende Beobachter darf keine Zentrifugalkraft postulieren. Mehr dazu in der Vorlesung Gravitation als Impulsquelle.
Zu den beiden Missverständnissen gesellt sich noch der völlig überflüssige Begriff der Zentripetalkraft. Die Zentripetalkraft ist eine Altlast der Physik, die es schnellstmöglich zu entsorgen gilt. Ursache für die Kreisbewegung ist eine gegen das Zentrum des Kreises gerichtete, resultierende Kraft. Diese Impulsänderungsrate wird in der Regel durch das Zusammenspiel mehrerer Impulsströme (Kräfte) erzeugt. Weil die meisten Kräfte schon zutreffend bezeichnet werden, erübrigt sich ein weiterer Name, der bloss im Spezialfall der Kreisbewegung auftritt. Die gegen die Mitte der Kreisbahn gerichtete, resultierende Kraft ist
- beim Kurven fahrenden Auto Teil der Haftreibungskraft
- beim Flugzeug Teil des Auftriebes
- beim Satelliten gleich der Gravitationskraft
- bei einem Elementarteilchen im Ringbeschleuniger gleich der elektromagnetischen Kraft.
Ort und Geschwindigkeit
Die Bewegung eines Körpers auf einer Kreisbahn kann mit dem Radius r und der Winkelgeschwindigkeit ω beschrieben werden. Dabei misst man den Winkel in Radianten. Diese Winkelmessung bezieht sich auf die Bogenlänge im Einheitskreis (ein Vollwinkel ist gleich 2 π und ein rechter Winkel gleich π/2). Folglich entspricht die Winkelgeschwindigkeit, die Änderungsrate des Winkels, der Geschwindigkeit eines Punktes auf dem Einheitskreis. Ändert sich die Winkelgeschwindigkeit nicht mit der Zeit, ist der Winkel gleich Winkelgeschwindigkeit mal Zeit
- [math]\varphi=\omega t[/math]
Aus der nebenstehend abgebildeten Skizze entnimmt man die x- und die y-Koordinaten des umlaufenden Radiusvektors
- [math]\vec r=\begin{pmatrix} x \\ y \end{pmatrix}=r\begin{pmatrix}\cos(\varphi)\\ \sin(\varphi)\end{pmatrix}=r\begin{pmatrix}\cos(\omega t)\\ \sin(\omega t)\end{pmatrix}[/math]
Die Geschwindigkeit steht bei der Kreisbewegung zu jedem Zeitpunkt normal zum Radiusvektor. Weil die Bogenlänge gleich Winkel mal Radius ist, muss der Betrag der Geschwindigkeit, die Schnelligkeit, gleich Winkelgeschwindigkeit mal Radius sein
- [math]v=\omega r[/math]
In der zweiten Skizze ist die Zerlegung der Geschwindigkeit in eine x- und eine y-Komponente eingezeichnet. vx verändert sich mit minus Sinus des Winkels und vy mit dem Cosinus des gleichen Winkels. Wird der Winkel durch Winkelgeschwindigkeit mal die Zeit ersetzt, erhält man
- [math]\vec v=\begin{pmatrix}\dot x\\ \dot y \end{pmatrix}=v \begin{pmatrix}-\sin (\varphi)\\ \cos(\varphi)\end{pmatrix}=r\omega \begin{pmatrix}-\sin(\omega t)\\ \cos(\omega t)\end{pmatrix}[/math]
Die Geschwindigkeit ist gleich der Änderungsrate des Ortsvektors oder gleich der Ableitung des Ortsvektors nach der Zeit. Die hier gegebene, getrennte Darstellung von Ort und Geschwindigkeit ermöglicht uns einen Einblick in die Regel der Differentialrechnung: leitet man eine Sinusfunktion ab, erhält man eine Cosinusfunktion; die Ableitung der Cosinusfunktion liefert eine minus Sinusfunktion. Zudem geht die Winkelgeschwindigkeit, der Faktor vor der freien Variablen, der Zeit, durch die Ableitung als Faktor in die Amplitude ein
- [math]\dot{\sin(\omega t)}=\frac{d \sin(\omega t)}{dt}=\omega \cos(\omega t)[/math]
und
- [math]\dot{\cos(\omega t)}=\frac{d \cos(\omega t)}{dt}=-\omega \sin(\omega t)[/math]
Impuls und Kraft
Das Kapazitivgesetz liefert bei gegebener Geschwindigkeit des Massenmittelpunktes den Impulsinhalt des Körpers
- [math]\vec p=m\vec v=\begin{pmatrix}mv_x \\ m v_y \end{pmatrix}=mv\begin{pmatrix}-\sin (\omega t)\\ \cos(\omega t)\end{pmatrix}=mr \omega \begin{pmatrix}-\sin (\omega t)\\ \cos(\omega t)\end{pmatrix}=p\begin{pmatrix}-\sin(\omega t)\\ \cos(\omega t) \end{pmatrix}[/math]
Für den Betrag des Impulsvektors gilt somit: p = m v = m ω r
Die Impulsänderungsrate erhält man durch nochmaliges Ableiten nach der Zeit
- [math]\dot{\vec p}=\begin{pmatrix}\dot p_x\\ \dot p_y\end{pmatrix}=\omega p\begin{pmatrix}-\cos(\omega t)\\ -\sin(\omega t) \end{pmatrix}=mr\omega^2\begin{pmatrix}-\cos(\omega t)\\ -\sin(\omega t)\end{pmatrix}=-m\omega^2\vec r=-m\frac{v^2}{r^2}\vec r=\vec F_{res}[/math]
Die Impulsänderungsrate, die resultierende Kraft, zeigt gegen den Radiusvektor, also nach innen. Der Betrag der resultierenden Kraft ist konstant und proportional zum Quadrat der Winkelgschwindigkeit bzw. zum Quadrat der Geschwindigkeit
- [math]F_{res}=m\omega^2 r=\frac{m v^2}{r}[/math]
Statt den Impuls abzuleiten, hätte man auch aus der Geschwindigkeit die Beschleunigung bilden können
- [math]\vec a=\dot{\vec v}=\begin{pmatrix}\dot v_x\\ \dot v_y\end{pmatrix}=\omega v\begin{pmatrix}-\cos(\omega t)\\ -\sin(\omega t) \end{pmatrix}=r\omega^2\begin{pmatrix}-\cos(\omega t)\\ -\sin(\omega t)\end{pmatrix}=-\omega^2\vec r=-\frac{v^2}{r^2}\vec r[/math]
Die Beschleunigung steht bei einer gleichförmigen Kreisbewegung normal zum Geschwindigkeitsvektor (Normalbeschleunigung) und zeigt gegen die Kreismitte. Der Betrag der Beschleunigung ist gleich Winkelgeschwindigkeit im Quadrat mal Radius oder gleich Geschwindigkeit im Quadrat durch Radius. Diese Formel sollten Sie auswendig wissen. Zudem sollten Sie nun eingesehen haben, dass der Begriff Zentrifugalkraft bei der Kreisbewegung gar nichts zu suchen hat.
Leistung und Energie
Wird die Kreisbewegung durch eine einzige Kraft verursacht, ist der dem Impulsstrom zugeordnete Energiestrom, die Leistung dieser Kraft, gleich Null (ein Skalarprodukt liefert den Wert Null, sobald die beiden Vektoren normal zueinander stehen)
- [math]P(\vec F)=\vec F\cdot\vec v=0[/math]
Damit bleibt die kinetische Energie des Körpers erhalten. Generell tauscht ein Kürper immer dann keine Energie mit der Umgebung aus, wenn die resultierende Kraft normal zu Geschwindigkeit steht. Unter diesen Umständen ändert die Kraft wohl den Impuls und damit die Bewegungsrichtung, nicht aber den Betrag der Geschwindigkeit.
Ein Körper, der sich mit konstanter Schnelligkeit auf einer Kreisbahn bewegt, ändert seinen Impulsinhalt, nicht aber seine kinetische Energie, d.h. der Impulsaustausch erfolgt leistungsfrei. Nun unterscheidet man im Alltag kaum zwischen Impuls und Energie bzw. Kraft (Impulsstromstärke) und Leistung (Energiestromstärke). So interessiert beim Auto Fahren meist nur der Benzinverbrauch. Deshalb darf man noch lange nicht behaupten, dass bei einer gleichmässigen Kreisbewegung der Körper keine Beschleunigung erfährt und dass sich die Kräfte aufheben. Leider werden die Schüler gerade in einführenden Kursen in ihrem diesbezüglichen Vorurteil noch gestärkt. Im deutschen Sprachraum kann es sogar passieren, dass ein Schüler für die Behauptung, dass sich bei einer Kurvenfahrt die Zentripetal- und die Zentrifugalkraft im Gleichgewicht halten, vom Lehrer gelobt statt zu sorgfältigem Nachdenken ermahnt wird.
Flüssigkeitsbild
Das Flüssigkeitsbild zeigt komponentenweise die wesentlichen Elemente der Translationsmechanik
- der Inhalt entspricht der Impulskomponente
- die Füllhöhe zeigt die Geschwindigkeit an
- die Geschwindigkeit der Flüssigkeitsoberfläche, des Spiegels, entspricht der Beschleunigung der zugehörigen Komponente
- die Inaltsänderungsrate zeigt, wie gross die entsprechende Komponente der resultierenden Kraft ist
Bei einer gleichförmigen Kreisbewegung schwingen die Spiegel in den Töpfen der beiden Flüssigkeitsbilder harmonisch auf und ab. Die zugehörige Impulsänderungsrate (Komponente der resultierenden Kraft) ist dann am grössten oder am kleinsten, wenn der Inhalt gerade gleich Null ist. Umgekehrt ist die Impulsänderungsrate gleich Null, soblald die Geschwindigkeit oder der Impulsinhalt das Maximum bzw. Minimum erreicht hat.
Im Flüssigkeitsbild erscheint die kinetische Energie als potentielle (Menge mal halbe Füllhöhe)
- [math]W_{kin}=p_x\frac{v_x}{2}+p_y\frac{v_y}{2}=\frac{m}{2}(v_x^2+v_y^2)=m\frac{v^2}{2}\left[(\sin\omega t)^2+(\cos\omega t)^2\right]=m\frac{v^2}{2}[/math]
Die kinetische Energie bleibt gesamthaft erhalten, obwohl sich die Anteile der beiden Komponenten quadratisch mit dem Sinus bzw. Cosinus verändern.
Beispiele
Auto
Ein Auto, das auf Glatteis gerät, fährt geradeaus. Es kann seinen Impuls nicht mehr mit der Erde austauschen, weil die Eisschicht bezüglich des Impulsstromes isolierend wirkt. Soll das Auto in der Kurve bleiben, muss es dauernd Impuls mit der Erde austauschen. Die zugehörige Impulsstromstärke nennt man Haftreibungskraft.
Die Haftreibungskraft bildet einen Kurzschluss bezüglich den Strömen des Horizontalimpulses. Anfahren, Bremsen oder Kurven Fahren sind nur möglich, solange die Haftreibungskraft wirkt. So werden Rennautos durch einen ärodynamisch erzeugten Abtrieb zusätzlich auf die Strasse gedrückt, damit die maximale Haftreibungskraft möglichst gross wird.
Das Auto tauscht über die Strasse und über die Luft Impuls mit der Erde aus. Untersucht man nur die beiden Horizontalkomponenten des Impulses, heissen die zugehörigen Impulsströme Haftreibungskraft und Luftwiderstand. Der Luftwiderstand wirkt gegen die anströmende Luft, also in der Regel nach hinten. Soll nun ein Auto einer gekrümmten Strasse folgen, muss die Vektorsumme aus Haftreibungskraft und Luftwiderstand gegen den momentanen Krümmungsmittelpunkt des Strassenstücks zeigen. Da die Haftreibungskraft nach oben begrenzt ist, kann es passieren, dass der Sollwert grösser als der maximal mögliche Istwert wird. Dann kann das Auto der Strasse nicht mehr folgen und gerät an den Rand. Obwohl nur der Krümmungsradius der Bahn grösser als der Radius der Strasse ist, hat der Autofahrer das Gefühl, dass er nach aussen getrieben wird. Dieses Gefühl berechtigt uns natürlich noch lange nicht, eine in diesem Zusammenhang völlig deplatzierte Zentrifugalkraft einzuführen.
Mathematisch ausgedrückt, bestimmt die Summe aus Luftwiderstand und Haftreibungskraft die Beschleunigung des Fahrzeuges
- [math]\vec F_W+\vec F_{HR}=\dot{\vec p}=m\vec a[/math]
Soll eine Kurve mit dem Radius r gefahren werden, ist der Betrag der resultierenden Kraft gleich
- [math]F_{Res}=m\frac{v^2}{r}=\frac{W_{kin}}{2r}[/math]
Die kinetische Energie bestimmt somit den Zusammenhang zwischen resultierender Kraft und Kurvenradius. Weil diese Kraft nicht grösser als der Maximalwert der Haftreibung werden kann, sollte der Quotient aus kinetischer Energie und Kurvenradius einen bestimmten Wert nicht überschreiten.
Flugzeug
Das Flugzeug kann Impuls nur mit dem Gravitationsfeld und der umgebenden Luft austauschen. Der Austausch mit dem Gravitationsfeld wird durch die Gewichtskraft beschrieben und die ist gleich Masse mal Gravitationsfeldstärke, hängt also von der momentanen Beladung des Flugzeuges ab. Der Impulsaustausch mit der Luft geschieht auf vielfältige Art.