Dynamische Systeme 1. Ordnung

Aus SystemPhysik

Lernziele

Problemstellung

Ein mit Wasser gefülltes Gefäss hängt an einem Kraftmessgerät. Nachdem man den Stöpsel im Boden heraus gezogen hat, leert sich das Gefäss über einen dünnen Wasserstrahl, der nach unten weg geht. Über die Kraftmessung können wir das Masse-Zeit-Verhalten beobachten. Wann ist das Gefäss noch halb voll? Wann ist es leer? Gibt es eine Füllstand-Zeit-Funktion für dieses Problem? Sie haben dieses Problem ist der ersten Woche des ersten Semesters mit Hilfe eines systemdynamischen Tools modelliert und simuliert. Nun wollen wird dieses System und eine ganze Klasse von ähnlichen Problemen mathematisch behandeln.

Wir stellen dazu ein zylinderförmiges Gefäss, aus dem in bodennähe ein Röhrchen horizontal weg führt, auf eine Waage. Das Gefäss entlehrt also seinen Inhalt über ein längeres Röhrchen statt über ein kleines Loch. Damit haben wir ein klare Trennung von Speicher und Leiter. Das Verhalten des Speichers kann mit Hilfe der Kapazität beschrieben werden

[math]\Delta V=C_V\Delta p[/math]

wobei für zylinderförmige Gefässe gilt

[math]C_V=\frac{A}{\varrho g}[/math]

Die Druckdifferenz über dem Röhrchen treibt den Volumenstrom. Falls die Flüssigkeit zäh genug ist und der Durchmesser des Röhrchens nicht zu gross, bleibt die Strömung laminar, d.h. Volumenstromstärke und Druckdifferenz sind proportional zueinander

[math]\Delta p = R_VI_V[/math]

Der laminare Strömungswiderstand kann mit Hilfe des Gesetzes von Hagen-Poiseuille berechnet werden. Beachten Sie, dass [math]\Delta p[/math] in den beiden Formeln eine unterschiedliche Bedeutung hat: im Kapazitivgesetz wird die Druckdifferenz zwischen zwei den Füllzuständen zu verschiedenen Zeitpunkten gebildet, im Widerstandsgesetz ist die Druckdifferenz über dem Rohr zum gleichen Zeitpunkt einzusetzen. Die erste Druckdifferenz wird demnach über eine Zeitspanne, die zweite über einer Länge gebildet.

Leiter

Lineare Widerstandsgesetze findet man in verschiedenen Gebieten der Physik

Gebiet Menge Potential Gesetz Beispiel
Hydrodynamik Volumen Druck [math]\Delta p=R_VI_V[/math] laminare Strömung
Elektrodynamik elektrische Ladung Spannung [math]U=RI[/math] Widerstandselement
Translationsmechanik Impuls Geschwindigkeit [math]\Delta v_x=R_{px}F_x[/math] linearer Dämpfer
Rotationsmechanik Drehimpuls Winkelgeschwindigkeit [math]\Delta \omega_x=R_{Lx}M_x[/math] Wirbelstrombremse
Thermodynamik Energie Temperatur [math]\Delta T=R_WI_W[/math] Wärmeleitung

In den ersten vier Beispielen fliesst ein Mengenstrom über eine Potentialdifferenz (Wasserfallbild). Dabei wird Energie frei gesetzt und Entropie erzeugt. Weil bei der Wärmeleitung Entropie hinunter fliesst und gleichzeitig Entropie erzeugt wird, nimmt man meist die Wärmeenergie als erhaltene mengenartige Grösse.

Speicher

Speicher mit konstanter Kapazität findet man in allen fünf Gebieten

Gebiet Menge Potential Gesetz Beispiel
Hydrodynamik Volumen Druck [math]C_V\Delta p=\Delta V[/math] [zylinderförmiger Behälter
Elektrodynamik elektrische Ladung Spannung [math]CU=Q[/math] Kondensator
Translationsmechanik Impuls Geschwindigkeit [math]mv_x=p_x[/math] Hammer
Rotationsmechanik Drehimpuls Winkelgeschwindigkeit [math]J\omega_x=L_x[/math] Schwungrad
Thermodynamik Energie Temperatur [math]C_p\Delta T=\Delta H[/math] Wärmespeicher

RC-Glied

Induktivität

RL-Glied

Energie

Prozessleistung

Kontrollfragen

Antworten zu den Kontrollfragen

Physik und Systemwissenschaft in Aviatik 2014