Thermodynamik
Gebiet
Die Thermodynamik beschäftigt sich mit der Dynamik (Speicher- und Transportvorgänge) der Entropie und der damit verbundenen Erwärmung und Ausdehnung von Körpern. Unter einem Körper verstehen wir hier eine abgrenzbare Menge "Materie" mit Masse, Volumen, Energie- und Entropiespeichervermögen. Der Entropiegehalt eines homogenen Körpers ist durch seine Temperatur und sein Volumen eindeutig beschrieben. Inhomogene Körper können durch Temperatur- und Dichteverteilung charakterisiert werden.
Modellmässig kann man die Körper in Speicher- und Stromelemente unterteilen. Obwohl jeder Körper gleichzeitig Entropie speichert und weiterleitet, macht diese Einteilung Sinn. Betrachten wir dazu ein Gefäss mit heisem Wasser, das sich gegen die Umgebung abkühlt. In einer ersten Beschreibung modelliert man das Wasser als Speicher, die Gefässwand, die Grenzschicht der Luft sowie den strahlungsartigen Entropietransport an die Umgebung als Stromelemente. Dieses Grobmodell lässt sich später verfeinern, indem zum Beispiel der Gefässwand auch noch eine Speicherfähigkeit zugesprochen wird.
Bei der Wärmeleitung und der Wärmestrahlung wird Entropie erzeugt. Folglich muss in jedem Stromelement noch die Entropieproduktionsrate berechnet und dem am Ausgang wegfliessenden Entropiestrom zugeschlagen werden. Diese etwas umständliche Modellierung lässt sich vermeiden, wenn man statt der Entropie die Energie als bilanzierfähige Grösse nimmt. Die Alternative, statt der Entropie als eigentliche Primärgrösse die Energie, also die Masse, zu bilanzieren, bringt nur bei total irreversiblen Prozessen wie Mischvorgängen oder Wärmeleitung eine Vereinfachung. Bei den wirklich interessanten Prozessen, wie sie in Wärmekraftmaschinen, Wärmepumpen oder Lebewesen ablaufen, kommt man um die Entropiebilanz nicht mehr herum.
Struktur
Bilanz
Ein Körper kann über die Oberfläche mit einem benachbarten Körper oder mittels Quellen über das elektromagnetische Feld Entropie austauschen. Die Entropiebilanz besagt, dass die Summe über alle Entropiestromstärken und die Entropiequellenstärke sowie die Entropieproduktionsrate gleich der Entropieänderungsrate ist. Zufliessende Ströme, Quellen und Entropieproduktion gehen mit einem positiven Vorzeichen, abfliessende Ströme und Senken mit einem negativen Vorzeichen in die Bilanz ein.
Offene Systeme tauschen zusätzlich Entropie mittels konvektiven Strömen aus. Konvektive Ströme produzieren im Innern des Systems durch Mischvorgänge meist noch zusätzliche Entropie.
konstitutive Gesetze
Wärmespeicher werden in der Regel bei konstant gehaltenem Druck, also isobar betrieben. Das Verhalten homogener Wärmespeicher wird mittels spezifischer Grössen beschrieben. Oft sind aber nur die Werte bezüglich der Energie, die bei konstant gehaltenem Druck als Enthalpie zu bilanzieren ist, tabelliert. Die Umrechnung von den energetischen (enthalpischen) in die entropischen Grössen erfolgt, wie mit Hilfe der Energie- und Entropiebilanz sowie des zugeordneten Energiestromes gezeigt werden kann, durch Division mit der absolute Temperatur.
spezifische Enthalpie und Entropie
Grösse | Formelzeichen | Einheit | Wert |
---|---|---|---|
spezifische Wärmekapazität | c | J/(K kg) | tabelliert |
spezifische Schmelzenthalpie | q | J/kg | tabelliert |
spezifische Verdampfungsenthalpie | r | J/kg | tabelliert |
spezifische Entropiekapazität | cS | J/(K2 kg) | c/T |
spezifische Schmelzentropie | qS | J/(K kg) | q/T |
spezifische Verdampfungsentropie | rS | J/(K kg) | r/T |
Wärme ist die Energie, die zusammen mit der Entropie über die Systemgrenze transportiert wird. Folglich hat das Wort Wärme bei Speichereigenschaften nichts zu suchen. Dass in den Tabellenbüchern die Schmelz- und Verdampfungsenthalpien oft mit Schmelz- und Verdampfungswärmen und die Enthalpieänderung pro Temperatur mit Wärmekapazität bezeichnet wird, zeigt, wie inkonsistent die Themodynamik gehandhabt wird.
Die Wärmeleitung in homogenen Stoffen beschreibt man mit der Hilfe der Wärmeleitfähigkeit. Diese Grösse beschreibt die Fähigkeit eines Stoffes, die "Wärme" zu transportieren. Weil bei der Wärmeleitung die Energie erhalten bleibt und die Entropie maximal zunimmt, ist die Wärmeleitfähigkeit bezüglich der Energie definiert. Die Wärmeleitfähigkeit beschreibt den Zusammenhang zwischen dem Temperaturgefälle und der Energiestromdichte.
Die Beschreibung des strahlungsartige Entropietransportes basiert auf dem Modell der Hohlraumstrahlung.
Ändert ein homogenes System sowohl den Druck als auch die Temperatur, sind die beiden [Potenzial|Potenzialgrössen]] Temperatur und Druck mit den beiden ]Primärgrössen Entropie und Volumen verknüpft. Das einfachste Modell für einen dermassen gekoppelten Speicher ist das ideale Gas