Lösung zu Kinematik des Propellers
Die Flugzeuggeschwindigkeit beträgt 140 m/s, die Drehzahl f = 35 Hz.
- Die Propeller drehen sich mit einer Winkelgeschwindigkeit von ω = 2 * π * f = 220 s-1.
- Die Zeit für eine Umdrehung des Propellers beträgt T = 1 / f. Während dieser Zeit legt das Flugzeug eine Strecke von s = v * T = 140 m/s / 35 Hz = 4 m zurück. Diese Strecke entspricht der Ganghöhe.
- Die Geschwindigkeit der Propellerspitze setzt sich aus 2 Geschwindigkeitskomponenten zusammen, die rechtwinklig zueinander stehen: Geschwindigkeit des Flugzeuges vF in Vorwärtsrichtung und Umfangsgeschwindigkeit der Propellerspitze vq = ω * r = 220 s-1 * 1m = 220 m/s in seitlicher Richtung. Die Geschwindigkeit der Propellerspitze wird deshalb [math]v = \sqrt{v_{F}^2 + v_q^2} = 261 m/s[/math]
- Die Vorwärtsbewegung der Propellerspitze trägt nichts zur Beschleunigung bei, weil ihre Geschwindigkeit konstant ist. Die gesuchte Beschleunigung entspricht also der Normalbeschleunigung einer Kreisbahn und beträgt: [math] a_{PS} = v_q^2 / r = \omega v_q [/math] = 220 s-1 * 220 m/s = 4.84 * 104 m/s2