Maxwellscher Dämon: Unterschied zwischen den Versionen
Admin (Diskussion | Beiträge) (Die Seite wurde neu angelegt: Der '''Maxwellsche Dämon''' oder '''Maxwell-Dämon''' ist ein vom schottischen Physiker ''James Clerk Maxwell'' veröffentlichtes Gedankenexperiment, mit dem er di...) |
Admin (Diskussion | Beiträge) |
||
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
Der '''Maxwellsche Dämon''' oder '''Maxwell-Dämon''' ist ein vom schottischen Physiker ''James Clerk Maxwell'' veröffentlichtes [[Gedankenexperiment]], mit dem er die mikroskopische Darstellung der [[Entropie]] hinterfragte. Das Dilemma, das aus diesem Gedankenexperiment resultierte, wurde von vielen namhaften Physikern |
Der '''Maxwellsche Dämon''' oder '''Maxwell-Dämon''' ist ein vom schottischen Physiker ''James Clerk Maxwell'' veröffentlichtes [[Gedankenexperiment]], mit dem er die mikroskopische Darstellung der [[Entropie]] hinterfragte. Das Dilemma, das aus diesem Gedankenexperiment resultierte, wurde von vielen namhaften Physikern bearbeitet und führte mehrfach zu neuen Erkenntnissen. Es zeigte sich ein Zusammenhang zwischen [[Information]] und [[Energie]]. Ausserhalb der Physik fand der Maxwellsche Dämon aufgrund der Faszination, die dieses Dilemma auslöst, auch Eingang in die Kunst. |
||
== |
== Wirkung des Maxwellschen Dämons == |
||
Das ursprüngliche Gedankenexperiment beschreibt einen Behälter, der durch eine Trennwand mit einer verschliessbaren kleinen Öffnung geteilt wird. Beide Hälften enthalten Luft von zunächst gleicher [[Temperatur]]. Ein Wesen (Dämon), das die Moleküle „sehen“ kann, öffnet und schliesst einen Schieber in der Trennwand, sobald ein schnelles Moleküle von der einen Seite oder ein langsames Moleküle von der andern auf die Trennwand zufliegt. Dank diesem Verfahren vergrössert sich die mittlere [[kinetische Energie]] der Moleküle auf der einen Seite des Behälters. Auf der andern Seite stellt sich ein entsprechendes Defizit ein. Weil die mittlere kinetische Energie ein Mass für die Temperatur darstellt, wird das eine Gas gekühlt und das andere geheizt. |
|||
Unter idealen Bedingungen muss zum Öffnen und Schliessen des Schiebers keine Energie aufgewendet werden. Trotzdem könnte man dank der sich bildenden Temperaturdifferenz eine [[Wärmekraftmaschine]] betreiben. Aus der Sicht der [[Thermodynamik]] vernichtet der Dämon [[Entropie]] bei konstant gehaltener Gesamtenergie. Nehmen wir an, dass der Dämon den Schieber so betätigt, dass die Gasmenge links und rechts des Schiebers konstant bleibt, dann gilt aufgrund der Energieerhaltung und unter der Annahme konstanter [[Wärmekapazität]]en (''C'') |
|||
Das ursprüngliche Gedankenexperiment beschreibt einen Behälter, der durch eine Trennwand mit einer verschließbaren kleinen Öffnung geteilt wird. Beide Hälften enthalten Luft von zunächst gleicher [[Temperatur]]. Ein Wesen, das die Moleküle „sehen“ kann – die Bezeichnung Dämon erhielt es erst später – öffnet und schließt die Verbindungsöffnung so, dass sich die schnellen Moleküle in der einen und die langsamen Moleküle in der anderen Hälfte des Behälters sammeln. |
|||
:<math>\Delta W_1+\Delta W_2=C_1(T_1-T_a)+C_2(T_2-T_a)=0</math> |
|||
Unter idealen Bedingungen muss zum Öffnen und Schließen der Öffnung in der Trennwand keine Energie aufgewendet werden. Trotzdem könnte man mit der entstehenden Temperaturdifferenz z. B. eine [[Wärmekraftmaschine]] betreiben. Man würde damit [[Arbeit (Physik)|Arbeit]] verrichten und hätte gleichzeitig gegenüber dem Ausgangszustand letztlich keine weitere Veränderung außer einer Verringerung der Temperatur im Behälter. Damit wäre der zweite Hauptsatz der [[Thermodynamik]] ''(„Es gibt keine periodisch arbeitende Maschine, die nichts weiteres leistet als die Abkühlung eines Körpers und das Anheben einer Last“)'' verletzt und man hätte ein [[Perpetuum Mobile]] zweiter Art gefunden. |
|||
Die vom Dämon vernichtete [[Entropie]] ist damit gleich |
|||
:<math>\Delta S=C_1\ln\left(\frac{T_1}{T_a}\right)+C_2\ln\left(\frac{T_2}{T_a}\right)<0</math> |
|||
Sind zudem die beiden Wärmekapazitäten gleich gross, gilt |
|||
:<math>\Delta S=C\ln\left(\frac{T_1 T_2}{T_a^2}\right)=C\ln\left(\frac{T_a^2-(\Delta T)^2}{T_a^2}\right)<0</math> |
|||
Der Behälter könnte auch mit einem Gemisch aus zwei verschiedenen Edelgasen gefüllt sein. Der Dämon hätte dann die Aufgabe, die Atome der beiden Gase zu trennen. Ist von beiden Gasen gleich viel Stoffmenge (''n'') vorhanden und wird der Behälter durch die Trennwand in zwei Hälften geteilt, nimmt die Entropie beim vollständigen Trennen um den folgenden Wert ab |
|||
:<math>\Delta S=n_1R\ln\left(\frac{V_1}{V_1+V_2}\right)+n_2 R\ln\left(\frac{V_2}{V_1+V_2}\right)=nR\ln(4)</math> |
|||
Ersetzt man danach die Trennwand durch zwei semipermeable Kolben, lässt sich über die Kolbenstangen durch reversibles Mischen der Gase Energie gewinnen. Steht das Gas mit der Umgebung (Temperatur ''T'') im thermischem Kontakt, ist die mechanisch abgeführte Energie betragsmässig gleich der von der Umgebung zugeführten Energie, also gleich |
|||
:<math>\Delta W=n_1RT\ln\left(\frac{V_1}{V_1+V_2}\right)+n_2RT\ln\left(\frac{V_2}{V_1+V_2}\right)=nRT\ln(4)</math> |
|||
Der Maxwellscher Dämon, der die Gas nach Geschwindigkeit trennt, und die Wärmekraftmaschine sowie der Maxwellscher Dämon, der die Gas sortiert, plus die beiden semipermeable Kolben bilden je ein [[Perpetuum Mobile]] zweiter Art (Energie bleibt erhalten, aber Entropie wird vernichtet). |
|||
== Lösungsversuche == |
== Lösungsversuche == |
||
Zeile 15: | Zeile 34: | ||
=== Lord Kelvin 1874 === |
=== Lord Kelvin 1874 === |
||
''William Thomson'', der spätere Lord Kelvin, führte die Bezeichnung „Maxwell’s demon“ ein und erkannte, dass das Kritische an dessen Beschäftigung im „Sortieren“ liegt, was sich auch auf andere Arten verwirklichen lässt. Er postulierte zusätzlich zum ursprünglichen „Temperaturdämon“ die Möglichkeit anderer Dämonen, die z.B. Wärmeenergie durch Sortieren nach der Bewegungsrichtung direkt in kinetische Energie verwandeln, Salzlösungen in konzentrierte Lösung und reines Wasser oder Gasgemische nach einzelnen Gasen separieren. Überall sah er in diesem Sortieren die Umkehrung des „natürlichen“ Vorganges der [[Dissipation]]. |
|||
⚫ | Maxwell hatte ein tiefer greifendes Problem der statistischen Mechanik aufgeworfen. Mit der Dynamik der Moleküle und mit Hilfe der Statistik liss sich zwar erklären, warum thermodynamische Prozesse spontan in ihrer „natürlichen“ Richtung ablaufen. Warum es aber nicht möglich sein sollte, solch einen Prozess mit geschicktem Einsatz technischer Mittel auch in umgekehrter Richtung zu erzwingen, war damit nicht zu erklären. |
||
Auch [[Max Planck]] und andere beschäftigten sich zu dieser Zeit mit dem Maxwellschen Dämon. Im Allgemeinen hielt man ihn einfach für „unnatürlich“ und betrachtete das Problem damit als erledigt oder wenigstens rein akademisch. Immerhin hatte er in die gerade erst entstandene [[Thermodynamik]] noch einige Klarheit gebracht. |
|||
⚫ | |||
=== Leó Szilárd 1929 === |
=== Leó Szilárd 1929 === |
||
''Leó Szilárd'' legte 1929 eine Aufsehen erregende Habilitation „Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen“ vor. Er vereinfachte das Modell zunächst radikal, indem er es auf ein einzelnes Molekül reduzierte. Das Wesen bringt in diesem Modell die Trennwand (die nun eher ein Kolben ist) ein, wenn das Molekül sich in einer vorher festgelegten Hälfte des Behälters befindet. Das Molekül drückt nun die Kolbentrennwand nach aussen und verrichtet dabei Arbeit an einem Gewicht. Dabei wird Wärme aus der Umgebung aufgenommen, so dass die Temperatur gleich bleibt. Dann wiederholt sich der Zyklus. Mit jedem Zyklus verringert sich die Wärme der Umgebung, während die potenzielle Energie des Gewichts sich um denselben Betrag vergrössert. Andererseits muss für jeden Zyklus das Wesen zunächst eine Messung vornehmen, indem es eine Hälfte des Behälters beobachtet: Ist das Molekül drin oder nicht? Durch die Messung wird also eine binäre Information gewonnen. Diese Information muss zumindest kurzfristig in einem Gedächtnis festgehalten werden. |
|||
Die Angelegenheit war jetzt überschaubar. Die einzige Interaktion des Wesens mit dem Ein-Molekül-Gas ist die Messung. Die thermodynamische Entropieverringerung kann, damit der zweite Hauptsatz nicht verletzt wird, also nur durch eine Entropieerzeugung von gleichem Betrag durch die Messung ausgeglichen werden. Den Betrag dieser Entropie ''S'' berechnete Szilárd aus den thermodynamischen Vorgängen zu ''S = k · ln 2'', mit der |
Die Angelegenheit war jetzt überschaubar. Die einzige Interaktion des Wesens mit dem Ein-Molekül-Gas ist die Messung. Die thermodynamische Entropieverringerung kann, damit der zweite Hauptsatz nicht verletzt wird, also nur durch eine Entropieerzeugung von gleichem Betrag durch die Messung ausgeglichen werden. Den Betrag dieser Entropie ''S'' berechnete Szilárd aus den thermodynamischen Vorgängen zu ''S = k · ln 2'', mit der Boltzmann-Konstante ''k''. |
||
Das bedeutet, dass die mit der Messung gespeicherte Information in irgendeiner Form diese Entropie ''S = k · ln 2'' beinhalten musste. Damit war zum ersten Mal, wenn auch noch recht unscharf, von einer |
Das bedeutet, dass die mit der Messung gespeicherte Information in irgendeiner Form diese Entropie ''S = k · ln 2'' beinhalten musste. Damit war zum ersten Mal, wenn auch noch recht unscharf, von einer Entropie der Information die Rede. Der Maxwellsche Dämon hatte zur Grundlage der Informationstheorie beigetragen. Wo im System aus Messung, Information und Speicher die Entropie genau zu suchen ist, konnte Szilárd noch nicht festlegen. |
||
=== Léon Brillouin 1951=== |
=== Léon Brillouin 1951=== |
||
Brillouin fragte 1951 genauer nach der Messung, dem „Sehen“ des Dämons. Sehen im wörtlichen Sinn bedeutet letztlich eine Abtastung der Moleküle mit Licht, auch wenn ganz andere Wellenlängen denkbar sind. Diese Abtastung bedeutet bei Berücksichtigung der Quantennatur des Lichts die Wechselwirkung zweier Teilchen, eines Moleküls und eines Photons, durch |
''Brillouin'' fragte 1951 genauer nach der Messung, dem „Sehen“ des Dämons. Sehen im wörtlichen Sinn bedeutet letztlich eine Abtastung der Moleküle mit Licht, auch wenn ganz andere Wellenlängen denkbar sind. Diese Abtastung bedeutet bei Berücksichtigung der Quantennatur des Lichts die Wechselwirkung zweier Teilchen, eines Moleküls und eines Photons, durch Stoss. Brillouin konnte nun relativ einfach zeigen, dass bei diesem Stoss immer genügend Entropie frei wird, um den zweiten Hauptsatz einzuhalten, wenn vorausgesetzt wird, dass die Energie der Photonen gross genug sein muss, um dem Dämon überhaupt Information liefern zu können. Der Dämon schien erledigt, die bei Szilárd noch offene Frage nach dem genauen Ort der Entropieerzeugung auf unspektakuläre Weise geklärt. |
||
Brillouin ging in seiner Interpretation aber weiter, er sah die Photonen als Übermittler von („gebundener“) Information und postulierte erstmals einen direkten Zusammenhang zwischen der von |
Brillouin ging in seiner Interpretation aber weiter, er sah die Photonen als Übermittler von („gebundener“) Information und postulierte erstmals einen direkten Zusammenhang zwischen der von ''Claude Elwood Shannon'' eingeführten Entropie der Information und thermodynamischer Entropie, wozu er Shannons Entropie mit einer Konstanten multiplizierte. Er formulierte dann das „Negentropie-Prinzip der Information“, das umstritten blieb: Die Information selbst ist negative Entropie (Negentropie) und bewirkt im Sinne einer Erhaltung eine entsprechende Entropieerhöhung im Gas. Der Dämon kann diese anschliessend höchstens gerade wieder ausgleichen. |
||
Allerdings erwies sich die Voraussetzung der Messung mit Photonen als zu starke Einschränkung, die auch umgangen werden konnte. |
Allerdings erwies sich die Voraussetzung der Messung mit Photonen als zu starke Einschränkung, die auch umgangen werden konnte. |
||
Zeile 39: | Zeile 56: | ||
=== Rolf Landauer und Charles Bennett 1961=== |
=== Rolf Landauer und Charles Bennett 1961=== |
||
''Rolf Landauer'' beschäftigte sich nicht mit dem Maxwellschen Dämon, sondern mit Informationsspeicherung. Er konnte 1961 am Modell eines Potenzialtopfs zeigen, dass das Löschen – im Sinne des Zurücksetzens in einen wiederbeschreibbaren Zustand – eines Bits physikalisch gespeicherter Information immer die bereits bekannte Entropie <math>k\,\ln 2</math> freisetzen muss. Landauer stellte einen Zusammenhang zur logischen Irreversibilität der Löschoperation her. Logisch reversible Operationen wie Schreiben und Lesen bewirken dagegen keine Entropie- oder Energiefreisetzung. Damit war für das, was Brillouin physikalisch irrelevant „freie“ Information genannt hatte, ein physikalischer Zusammenhang nachgewiesen. Aber erst ''Charles Bennett'' zeigte 1982, dass mit der Anwendung des Landauer-Prinzips auf das Gedächtnis des Maxwellschen Dämons dem Gas exakt die vermisste Entropie wieder zugeführt wird, um den zweiten Hauptsatz zu erfüllen, während andererseits die Messung mit beliebig geringer Dissipation ausgeführt werden kann. |
|||
Orly R. Shenker |
''Orly R. Shenker'' zeigt in einer sehr detaillierten [http://philsci-archive.pitt.edu/archive/00000115/ Analyse] von Landauers Thesen aus dem Jahr 2000 auf diverse Brüche in der Argumentation Landauers auf, die sich insbesondere auf eine unzulässigen Verknüpfung des Begriffes der Dissipation, der sowohl in der Informationstheorie wie der Thermodynamik verwendet wird, zurückführen lassen. Er weist darauf hin, dass das Landauer-Prinzip auf dem 2. Hauptsatz der Thermodynamik aufbaut. Da durch die Lösung des Problems des Maxwellschen Dämons die Gültigkeit des Zweiten Hauptsatzes bewiesen werden soll, entsteht ein unzulässiger Zirkelbezug. |
||
=== Oliver Penrose 1970=== |
=== Oliver Penrose 1970=== |
||
''Oliver Penrose'' beschäftigte sich im Jahr 1970 mit dem Maxwellschen Dämon und kam, ohne Landauers Arbeit zu kennen, noch vor Bennett mit einer statistischen Argumentation zur Entropie zum gleichen Ergebnis: Wenn der Informations-Speicher des Dämons voll ist, kann er erst nach Zurücksetzung weiter benutzt werden. Dies verringert die möglichen Zustände des Gesamtsystems. Die Anwendung einer statistischen Entropiedefinition auf den Speicher führt dann ebenfalls zu Landauers Ergebnis. |
|||
Es folgen |
|||
* Smoluchowski/Feynman |
|||
* [[Quantenverschränkung]] |
|||
* Prozessdämonen |
|||
[[Kategorie:Thermo]] |
[[Kategorie:Thermo]] |
Aktuelle Version vom 14. Dezember 2007, 15:35 Uhr
Der Maxwellsche Dämon oder Maxwell-Dämon ist ein vom schottischen Physiker James Clerk Maxwell veröffentlichtes Gedankenexperiment, mit dem er die mikroskopische Darstellung der Entropie hinterfragte. Das Dilemma, das aus diesem Gedankenexperiment resultierte, wurde von vielen namhaften Physikern bearbeitet und führte mehrfach zu neuen Erkenntnissen. Es zeigte sich ein Zusammenhang zwischen Information und Energie. Ausserhalb der Physik fand der Maxwellsche Dämon aufgrund der Faszination, die dieses Dilemma auslöst, auch Eingang in die Kunst.
Wirkung des Maxwellschen Dämons
Das ursprüngliche Gedankenexperiment beschreibt einen Behälter, der durch eine Trennwand mit einer verschliessbaren kleinen Öffnung geteilt wird. Beide Hälften enthalten Luft von zunächst gleicher Temperatur. Ein Wesen (Dämon), das die Moleküle „sehen“ kann, öffnet und schliesst einen Schieber in der Trennwand, sobald ein schnelles Moleküle von der einen Seite oder ein langsames Moleküle von der andern auf die Trennwand zufliegt. Dank diesem Verfahren vergrössert sich die mittlere kinetische Energie der Moleküle auf der einen Seite des Behälters. Auf der andern Seite stellt sich ein entsprechendes Defizit ein. Weil die mittlere kinetische Energie ein Mass für die Temperatur darstellt, wird das eine Gas gekühlt und das andere geheizt.
Unter idealen Bedingungen muss zum Öffnen und Schliessen des Schiebers keine Energie aufgewendet werden. Trotzdem könnte man dank der sich bildenden Temperaturdifferenz eine Wärmekraftmaschine betreiben. Aus der Sicht der Thermodynamik vernichtet der Dämon Entropie bei konstant gehaltener Gesamtenergie. Nehmen wir an, dass der Dämon den Schieber so betätigt, dass die Gasmenge links und rechts des Schiebers konstant bleibt, dann gilt aufgrund der Energieerhaltung und unter der Annahme konstanter Wärmekapazitäten (C)
- [math]\Delta W_1+\Delta W_2=C_1(T_1-T_a)+C_2(T_2-T_a)=0[/math]
Die vom Dämon vernichtete Entropie ist damit gleich
- [math]\Delta S=C_1\ln\left(\frac{T_1}{T_a}\right)+C_2\ln\left(\frac{T_2}{T_a}\right)\lt 0[/math]
Sind zudem die beiden Wärmekapazitäten gleich gross, gilt
- [math]\Delta S=C\ln\left(\frac{T_1 T_2}{T_a^2}\right)=C\ln\left(\frac{T_a^2-(\Delta T)^2}{T_a^2}\right)\lt 0[/math]
Der Behälter könnte auch mit einem Gemisch aus zwei verschiedenen Edelgasen gefüllt sein. Der Dämon hätte dann die Aufgabe, die Atome der beiden Gase zu trennen. Ist von beiden Gasen gleich viel Stoffmenge (n) vorhanden und wird der Behälter durch die Trennwand in zwei Hälften geteilt, nimmt die Entropie beim vollständigen Trennen um den folgenden Wert ab
- [math]\Delta S=n_1R\ln\left(\frac{V_1}{V_1+V_2}\right)+n_2 R\ln\left(\frac{V_2}{V_1+V_2}\right)=nR\ln(4)[/math]
Ersetzt man danach die Trennwand durch zwei semipermeable Kolben, lässt sich über die Kolbenstangen durch reversibles Mischen der Gase Energie gewinnen. Steht das Gas mit der Umgebung (Temperatur T) im thermischem Kontakt, ist die mechanisch abgeführte Energie betragsmässig gleich der von der Umgebung zugeführten Energie, also gleich
- [math]\Delta W=n_1RT\ln\left(\frac{V_1}{V_1+V_2}\right)+n_2RT\ln\left(\frac{V_2}{V_1+V_2}\right)=nRT\ln(4)[/math]
Der Maxwellscher Dämon, der die Gas nach Geschwindigkeit trennt, und die Wärmekraftmaschine sowie der Maxwellscher Dämon, der die Gas sortiert, plus die beiden semipermeable Kolben bilden je ein Perpetuum Mobile zweiter Art (Energie bleibt erhalten, aber Entropie wird vernichtet).
Lösungsversuche
James Clerk Maxwell 1871
Maxwell selbst sah in dem von ihm geschaffenen Problem lediglich einen deutlichen Hinweis auf die Tatsache, dass der zweite Hauptsatz statistischer Natur ist, also nur im makroskopischen Bereich gilt. Wählt man die Gesamtzahl der Moleküle klein genug, wird es sogar wahrscheinlich, dass auch bei ständig geöffneter Verbindung zeitweilig deutliche Temperaturunterschiede zwischen den beiden Behälterhälften auftreten.
Lord Kelvin 1874
William Thomson, der spätere Lord Kelvin, führte die Bezeichnung „Maxwell’s demon“ ein und erkannte, dass das Kritische an dessen Beschäftigung im „Sortieren“ liegt, was sich auch auf andere Arten verwirklichen lässt. Er postulierte zusätzlich zum ursprünglichen „Temperaturdämon“ die Möglichkeit anderer Dämonen, die z.B. Wärmeenergie durch Sortieren nach der Bewegungsrichtung direkt in kinetische Energie verwandeln, Salzlösungen in konzentrierte Lösung und reines Wasser oder Gasgemische nach einzelnen Gasen separieren. Überall sah er in diesem Sortieren die Umkehrung des „natürlichen“ Vorganges der Dissipation.
Maxwell hatte ein tiefer greifendes Problem der statistischen Mechanik aufgeworfen. Mit der Dynamik der Moleküle und mit Hilfe der Statistik liss sich zwar erklären, warum thermodynamische Prozesse spontan in ihrer „natürlichen“ Richtung ablaufen. Warum es aber nicht möglich sein sollte, solch einen Prozess mit geschicktem Einsatz technischer Mittel auch in umgekehrter Richtung zu erzwingen, war damit nicht zu erklären.
Leó Szilárd 1929
Leó Szilárd legte 1929 eine Aufsehen erregende Habilitation „Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen“ vor. Er vereinfachte das Modell zunächst radikal, indem er es auf ein einzelnes Molekül reduzierte. Das Wesen bringt in diesem Modell die Trennwand (die nun eher ein Kolben ist) ein, wenn das Molekül sich in einer vorher festgelegten Hälfte des Behälters befindet. Das Molekül drückt nun die Kolbentrennwand nach aussen und verrichtet dabei Arbeit an einem Gewicht. Dabei wird Wärme aus der Umgebung aufgenommen, so dass die Temperatur gleich bleibt. Dann wiederholt sich der Zyklus. Mit jedem Zyklus verringert sich die Wärme der Umgebung, während die potenzielle Energie des Gewichts sich um denselben Betrag vergrössert. Andererseits muss für jeden Zyklus das Wesen zunächst eine Messung vornehmen, indem es eine Hälfte des Behälters beobachtet: Ist das Molekül drin oder nicht? Durch die Messung wird also eine binäre Information gewonnen. Diese Information muss zumindest kurzfristig in einem Gedächtnis festgehalten werden.
Die Angelegenheit war jetzt überschaubar. Die einzige Interaktion des Wesens mit dem Ein-Molekül-Gas ist die Messung. Die thermodynamische Entropieverringerung kann, damit der zweite Hauptsatz nicht verletzt wird, also nur durch eine Entropieerzeugung von gleichem Betrag durch die Messung ausgeglichen werden. Den Betrag dieser Entropie S berechnete Szilárd aus den thermodynamischen Vorgängen zu S = k · ln 2, mit der Boltzmann-Konstante k.
Das bedeutet, dass die mit der Messung gespeicherte Information in irgendeiner Form diese Entropie S = k · ln 2 beinhalten musste. Damit war zum ersten Mal, wenn auch noch recht unscharf, von einer Entropie der Information die Rede. Der Maxwellsche Dämon hatte zur Grundlage der Informationstheorie beigetragen. Wo im System aus Messung, Information und Speicher die Entropie genau zu suchen ist, konnte Szilárd noch nicht festlegen.
Léon Brillouin 1951
Brillouin fragte 1951 genauer nach der Messung, dem „Sehen“ des Dämons. Sehen im wörtlichen Sinn bedeutet letztlich eine Abtastung der Moleküle mit Licht, auch wenn ganz andere Wellenlängen denkbar sind. Diese Abtastung bedeutet bei Berücksichtigung der Quantennatur des Lichts die Wechselwirkung zweier Teilchen, eines Moleküls und eines Photons, durch Stoss. Brillouin konnte nun relativ einfach zeigen, dass bei diesem Stoss immer genügend Entropie frei wird, um den zweiten Hauptsatz einzuhalten, wenn vorausgesetzt wird, dass die Energie der Photonen gross genug sein muss, um dem Dämon überhaupt Information liefern zu können. Der Dämon schien erledigt, die bei Szilárd noch offene Frage nach dem genauen Ort der Entropieerzeugung auf unspektakuläre Weise geklärt.
Brillouin ging in seiner Interpretation aber weiter, er sah die Photonen als Übermittler von („gebundener“) Information und postulierte erstmals einen direkten Zusammenhang zwischen der von Claude Elwood Shannon eingeführten Entropie der Information und thermodynamischer Entropie, wozu er Shannons Entropie mit einer Konstanten multiplizierte. Er formulierte dann das „Negentropie-Prinzip der Information“, das umstritten blieb: Die Information selbst ist negative Entropie (Negentropie) und bewirkt im Sinne einer Erhaltung eine entsprechende Entropieerhöhung im Gas. Der Dämon kann diese anschliessend höchstens gerade wieder ausgleichen.
Allerdings erwies sich die Voraussetzung der Messung mit Photonen als zu starke Einschränkung, die auch umgangen werden konnte.
Rolf Landauer und Charles Bennett 1961
Rolf Landauer beschäftigte sich nicht mit dem Maxwellschen Dämon, sondern mit Informationsspeicherung. Er konnte 1961 am Modell eines Potenzialtopfs zeigen, dass das Löschen – im Sinne des Zurücksetzens in einen wiederbeschreibbaren Zustand – eines Bits physikalisch gespeicherter Information immer die bereits bekannte Entropie [math]k\,\ln 2[/math] freisetzen muss. Landauer stellte einen Zusammenhang zur logischen Irreversibilität der Löschoperation her. Logisch reversible Operationen wie Schreiben und Lesen bewirken dagegen keine Entropie- oder Energiefreisetzung. Damit war für das, was Brillouin physikalisch irrelevant „freie“ Information genannt hatte, ein physikalischer Zusammenhang nachgewiesen. Aber erst Charles Bennett zeigte 1982, dass mit der Anwendung des Landauer-Prinzips auf das Gedächtnis des Maxwellschen Dämons dem Gas exakt die vermisste Entropie wieder zugeführt wird, um den zweiten Hauptsatz zu erfüllen, während andererseits die Messung mit beliebig geringer Dissipation ausgeführt werden kann.
Orly R. Shenker zeigt in einer sehr detaillierten Analyse von Landauers Thesen aus dem Jahr 2000 auf diverse Brüche in der Argumentation Landauers auf, die sich insbesondere auf eine unzulässigen Verknüpfung des Begriffes der Dissipation, der sowohl in der Informationstheorie wie der Thermodynamik verwendet wird, zurückführen lassen. Er weist darauf hin, dass das Landauer-Prinzip auf dem 2. Hauptsatz der Thermodynamik aufbaut. Da durch die Lösung des Problems des Maxwellschen Dämons die Gültigkeit des Zweiten Hauptsatzes bewiesen werden soll, entsteht ein unzulässiger Zirkelbezug.
Oliver Penrose 1970
Oliver Penrose beschäftigte sich im Jahr 1970 mit dem Maxwellschen Dämon und kam, ohne Landauers Arbeit zu kennen, noch vor Bennett mit einer statistischen Argumentation zur Entropie zum gleichen Ergebnis: Wenn der Informations-Speicher des Dämons voll ist, kann er erst nach Zurücksetzung weiter benutzt werden. Dies verringert die möglichen Zustände des Gesamtsystems. Die Anwendung einer statistischen Entropiedefinition auf den Speicher führt dann ebenfalls zu Landauers Ergebnis.