Wärmetransport: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Zeile 52: Zeile 52:


==Wärmestrahlung==
==Wärmestrahlung==
Die Strahlung, die sich im Innern eines evakuierten Hohlraumes bei konstant gehaltener Temperatur der Wände aufbaut, ist schon im 19. Jahrhundert untersucht und theoretisch erklärt worden. Diese [[Hohlraumstrahlung]] bildet das Basismodell für viele Strahlungsphänomene. Bohrt man ein kleines Loch in den Hohlraum, entweicht eine Wärmestrahlung, deren [[Intensität]] nur von der Temperatur im Hohlraum und dem Winkel gegen die Mittelachse der Bohrung bestimmt wird. Nimmt man statt des Lochs eine materielle Oberfläche, ist die Intensität bei sonst gleichen Bedingungen kleiner als beim Loch, d.h. das Loch ist der beste aller Strahler.

Um die Strahlung zwischen zwei beliebig geformten Körpern verschiedener Temperaturen zu rechnen, müsst man beide Oberflächen in kleine Stücke zerlegen und für jedes Stück die Intensität in Funktion des Winkels gegen die Flächennormale sowie die Absorptionsfähigkeit bestimmen. Danach muss man über die Oberfläche beider Körper zweimal summieren (einmal für die Abstrahlung und einmal für die Absorption). Wir beschränken uns hier aber auf eine Summenformel für graue, kugelförmige Körper der Temperatur ''T'' in einer homogenen Umgebung der Temperatur ''T<sub>0</sub>''. Der Nettoenergiestrom ist dann gleich

:<math>I_W=\sigma\varepsilon A(T^4-T_0^4)</math>

''&sigma;'' ist die universelle gültige '''Stefan-Boltzmann-Konstante''' und hat den Wert 5.67 10<sup>-8</sup> W/m<sup>2</sup>K<sup>4</sup>. ''A'' ist die Oberfläche der Kugel,''&epsilon;'' heisst '''Emissionszahl''' und beschreibt die Abweichung gegenüber einem idealen Strahler, also einem Loch im "Backofen" (''&epsilon;'' = 1). Ein ideal verspiegelter Körper, der überhaupt nicht strahlt, würde mit ''&epsilon;'' = 0 beschrieben. Die Wörter schwarz (''&epsilon;'' = 1), grau (0 < ''&epsilon;'' < 1) und weiss (''&epsilon;'' = 0) sind in diesem Zusammenhang etwas irreführend, weil sich schwarz, grau und weiss nur auf das sichtbare Licht beziehen, mit der Emissionszahl aber der ganze Bereich von infrarot bis ultraviolett erfasst wird.

Ist der Körper nicht viel heisser als die Umgebung, kann ein lineares Näherungsgesetz formuliert werden

:<math>I_W=\sigma\varepsilon A(T-T_0)(T^3+T^2T_0+TT_0^2+T_0^3)\approx 4T_0^4\sigma\varepsilon A(T-T_0)=G_W(T-T_0)</math>

Bei kleiner Temperaturdifferenz verhält sich die Strahlung wie ein Wärmeleiter.


==Wärmedurchgang==
==Wärmedurchgang==

Version vom 3. Februar 2008, 20:35 Uhr

Wärme kann wie der Impuls auf drei Arten transportiert werden

Die Zuordnung, wonach die absolute Temperatur mal die Stärke des Entropiestromes gleich der Stärke des zugeordneten Energiestroms ist, gilt nur für den leitungsartigen Wärmestrom. Wir werden uns in dieser Vorlesung nur mit der Energiebilanz beschäftigen, weil bei allen drei Transporten Entropie produziert wird.

Wärmeleitung

Geht man bei der Wärmeleitung von der Energie als Bilanzgrösse aus, darf dieser Prozess mit einer Art Ohmschen Gesetz beschrieben werden. Analog zu U = R I gilt dann

[math]\Delta T=R_W I_W[/math]

Statt mit einem thermischen Widerstand RW kann das Verhalten eines Wärmeleiters auch reziprok mit Hilfe des Leitwerts GW definiert werden.

[math]I_W=G_W\Delta T[/math]

Der thermische Widerstand wird in K/W und der thermische Leitwert wie die Entropie in W/K gemessen. Den thermischen Leitwert könnte man auch in W/°C angeben, die Entropie aber natürlich nicht.

Analog zum elektrischen Widerstand oder Leitwert lässt sich der thermische Widerstand bzw. Leitwert eines prismatischen Körpers (Querschnitt A, Dicke d) mit einer einfachen Formel beschreiben

[math]G_W=\lambda\frac{A}{d}[/math]

Die Grösse λ heisst Wärmeleitwert und ist materialspezifisch und zudem von der Temperatur abhängig. Der Leitwert von komplexeren Geometrien wie die eines kompakten Fensterrahmens lässt sich mit Hilfe eines FE-Programms (Programm, das mit der Methode der finiten Elemente arbeitet) ermittelen.

Im wärmeleitenden Prisma fällt der Entropiestrom thermisch hinunter und setzt dabei eine Prozessleistung frei. Die mit dieser Prozessleistung produzierte Entropie vergrössert den ursprünglichen Entropiestrom. Um die Produktionsrate zu berechnen geht man von der Entropiebilanz bei einem stationärem Strom aus und setzt dann die Energiezuordnung ein

[math]\Pi_S=I_{S2}-I_{S1}=I_W\left(\frac{1}{T_2}-\frac{1}{T_1}\right)=I_W\frac{T_1-T_2}{T_1 T_2}=G_W\frac{(\Delta T)^2}{T_1 T_2}[/math]

Zum gleichen Ergebnis gelangt man auch über die bei dem thermischen Prozess dissipierte Leistung

[math]\Pi_S=\frac{P_{diss}}{T_2}=\frac{I_{S1}(T_1-T_2)}{T_2}=I_W\frac{T_1-T_2}{T_1 T_2}[/math]

In der letzten Umformung ist der ganze Ausdruck mit der Eingangstemperatur multipliziert worden. Diese Temperatur mal die Stärke des dort zuströmenden Entropiestromes ergibt den zugeordneten Energiestrom, der bei stationärer Prozessführung längs der Wärmeleitung erhalten bleibt.

Konvektion

Die Konvektion der Luft in der Atmosphäre bestimmt das Wetter und die Konvektion des Wassers in den Weltmeeren hat einen grossen Einfluss auf das Klima. Die Anströmung bei den Flugzeugen und die Strömung in einem Venturirohr sind weitere konvektive Vorgänge, die es zu untersuchen gäbe. Der konvektive Transport ist aber ein äusserst komplexes Phänomen, handelt es sich doch dabei um bewegte Materie, die Energie, Entropie und Impuls speichert und längs des Transportweges austauscht. Im Sinne eines Kompromisses wollen wir hier nur kurz diskutieren, wie der Energietransport bei einer stationären Strömung beschrieben wird.

Ein Fluid kann die Energie auf vier Arten transportieren, als hydraulisch zugeordnete Energie, als kinetische, als Gravitations- oder als als innere Energie. Jedem Volumenstrom dürfen folglich vier Energieterme zugeordnet werden

[math]I_W=\left(p+\frac{\rho}{2}v^2+\varrho g z+\rho_W\right)I_V[/math]

Entsprechend gilt für den Massenstrom

[math]I_W=\left(\frac{p}{\varrho}+\frac{v^2}{2}+ g z+w\right)I_m[/math]

Die Dichte der inneren Energie wird mit ρW und die spezifische innere Energie mit w bezeichnet (eine spezifische Grösse wird möglichst mit einem kleinen Buchstaben bezeichnet). Für die Höhe wird hier z geschrieben, damit keine Verwechslung mit der spezifischen Enthalpie h möglich ist.

Nun ist der Reziprokwert der Dichte das spezifische Volumen. Folglich lassen sich der erste und der letzte Term zur spezifischen Enthalpie zusammen fassen

[math]I_W=\left(\frac{v^2}{2}+ g z+h\right)I_m=\left(\frac{v^2}{2}+ g z+c_p(T-T_0)\right)I_m[/math]

In der letzten Umformung ist die spezifische Enthalpie mit Hilfe des kapazitiven Gesetzes ersetzt worden. Die Enthalpie ist hier bei der Temperatur T0 gleich Null gesetzt worden.

Wärmestrahlung

Die Strahlung, die sich im Innern eines evakuierten Hohlraumes bei konstant gehaltener Temperatur der Wände aufbaut, ist schon im 19. Jahrhundert untersucht und theoretisch erklärt worden. Diese Hohlraumstrahlung bildet das Basismodell für viele Strahlungsphänomene. Bohrt man ein kleines Loch in den Hohlraum, entweicht eine Wärmestrahlung, deren Intensität nur von der Temperatur im Hohlraum und dem Winkel gegen die Mittelachse der Bohrung bestimmt wird. Nimmt man statt des Lochs eine materielle Oberfläche, ist die Intensität bei sonst gleichen Bedingungen kleiner als beim Loch, d.h. das Loch ist der beste aller Strahler.

Um die Strahlung zwischen zwei beliebig geformten Körpern verschiedener Temperaturen zu rechnen, müsst man beide Oberflächen in kleine Stücke zerlegen und für jedes Stück die Intensität in Funktion des Winkels gegen die Flächennormale sowie die Absorptionsfähigkeit bestimmen. Danach muss man über die Oberfläche beider Körper zweimal summieren (einmal für die Abstrahlung und einmal für die Absorption). Wir beschränken uns hier aber auf eine Summenformel für graue, kugelförmige Körper der Temperatur T in einer homogenen Umgebung der Temperatur T0. Der Nettoenergiestrom ist dann gleich

[math]I_W=\sigma\varepsilon A(T^4-T_0^4)[/math]

σ ist die universelle gültige Stefan-Boltzmann-Konstante und hat den Wert 5.67 10-8 W/m2K4. A ist die Oberfläche der Kugel,ε heisst Emissionszahl und beschreibt die Abweichung gegenüber einem idealen Strahler, also einem Loch im "Backofen" (ε = 1). Ein ideal verspiegelter Körper, der überhaupt nicht strahlt, würde mit ε = 0 beschrieben. Die Wörter schwarz (ε = 1), grau (0 < ε < 1) und weiss (ε = 0) sind in diesem Zusammenhang etwas irreführend, weil sich schwarz, grau und weiss nur auf das sichtbare Licht beziehen, mit der Emissionszahl aber der ganze Bereich von infrarot bis ultraviolett erfasst wird.

Ist der Körper nicht viel heisser als die Umgebung, kann ein lineares Näherungsgesetz formuliert werden

[math]I_W=\sigma\varepsilon A(T-T_0)(T^3+T^2T_0+TT_0^2+T_0^3)\approx 4T_0^4\sigma\varepsilon A(T-T_0)=G_W(T-T_0)[/math]

Bei kleiner Temperaturdifferenz verhält sich die Strahlung wie ein Wärmeleiter.

Wärmedurchgang

thermisches RC-Glied