Wärmetransport

Aus SystemPhysik

Wärme kann wie der Impuls auf drei Arten transportiert werden

Die Zuordnung, wonach die absolute Temperatur mal die Stärke des Entropiestromes gleich der Stärke des zugeordneten Energiestroms ist, gilt nur für den leitungsartigen Wärmestrom. Zudem wird bei allen drei Transporten Entropie produziert. Deshalb beschäftigen wir uns in dieser Vorlesung nur mit der Energiebilanz.

Lernziele

Sie lernen in dieser Vorlesung

Wärmeleitung

Geht man bei der Wärmeleitung von der Energie als Bilanzgrösse aus, darf dieser Prozess mit einer Art Ohmschen Gesetz beschrieben werden. Analog zu U = R I gilt dann

[math]\Delta T=R_W I_W[/math]

Statt mit einem thermischen Widerstand RW kann das Verhalten eines Wärmeleiters auch reziprok mit Hilfe des Leitwerts GW definiert werden.

[math]I_W=G_W\Delta T[/math]

Der thermische Widerstand wird in K/W und der thermische Leitwert wie die Entropie in W/K gemessen. Den thermischen Leitwert könnte man auch in W/°C angeben, die Entropie aber natürlich nicht.

Analog zum Leitwert eines Drahts lässt sich der thermische Leitwert eines prismatischen Körpers (Querschnitt A, Dicke d) mit einer einfachen Formel beschreiben

[math]G_W=\lambda\frac{A}{d}[/math]

Die materialspezifische Grösse λ heisst Wärmeleitfähigkeit. Die Wärmeleitfähigkeit hängt wie die elektrische Leitfähigkeit von der Temperatur ab. Bei komplexeren Geometrien wie etwa einem Fensterrahmen muss der Leitwert mit Hilfe eines FE-Programms (Programm, das mit der Methode der finiten Elemente arbeitet) berechnet werden.

Im wärmeleitenden Bauteil fällt der Entropiestrom thermisch hinunter und setzt dabei eine Prozessleistung frei. Die mit dieser Prozessleistung produzierte Entropie vergrössert den ursprünglichen Entropiestrom. Um die Produktionsrate zu berechnen, geht man von der Entropiebilanz bei einem stationärem Strom aus und setzt dann die Energiezuordnung ein

[math]\Pi_S=I_{S2}-I_{S1}=I_W\left(\frac{1}{T_2}-\frac{1}{T_1}\right)=I_W\frac{T_1-T_2}{T_1 T_2}=G_W\frac{(\Delta T)^2}{T_1 T_2}[/math]

Zum gleichen Ergebnis gelangt man auch über die im thermischen Prozess dissipierte Leistung

[math]\Pi_S=\frac{P_{diss}}{T_2}=\frac{I_{S1}(T_1-T_2)}{T_2}=I_W\frac{T_1-T_2}{T_1 T_2}[/math]

In der letzten Umformung ist der ganze Ausdruck mit der Eingangstemperatur multipliziert worden. Diese Temperatur mal die Stärke des dort zuströmenden Entropiestromes ergibt den zugeordneten Energiestrom, der bei stationärer Prozessführung längs der Wärmeleitung erhalten bleibt.

Konvektion

Die Konvektion der Luft in der Atmosphäre bestimmt das Wetter und die Konvektion des Wassers in den Weltmeeren hat einen grossen Einfluss auf das Klima. Die Anströmung bei den Flugzeugen und die Strömung in einem Venturirohr sind weitere konvektive Vorgänge, die es mit Bezug zur Thermodynamik zu untersuchen gäbe. Der konvektive Transport ist aber ein äusserst komplexes Phänomen, handelt es sich doch dabei um bewegte Materie, die Energie, Entropie und Impuls speichert und längs des Transportweges austauscht. Im Sinne eines Kompromisses wollen wir hier nur kurz diskutieren, wie der Energietransport bezüglich eines Querschnitts beschrieben wird.

Ein Fluid kann die Energie auf vier Arten transportieren, als hydraulisch zugeordnete Energie, als kinetische, als Gravitations- oder als als innere Energie. Jedem Volumenstrom dürfen folglich vier Energieterme zugeordnet werden

[math]I_W=\left(p+\frac{\rho}{2}v^2+\varrho g z+\rho_W\right)I_V[/math]

Entsprechend gilt für den Massenstrom

[math]I_W=\left(\frac{p}{\varrho}+\frac{v^2}{2}+ g z+w\right)I_m[/math]

Die Dichte der inneren Energie wird mit ρW und die spezifische innere Energie mit w bezeichnet (eine spezifische Grösse wird meist mit einem kleinen Buchstaben bezeichnet). Für die Höhe wird hier z geschrieben, damit keine Verwechslung mit der spezifischen Enthalpie h möglich ist.

Nun ist der Reziprokwert der Dichte das spezifische Volumen. Folglich lassen sich der erste und der letzte Term zur spezifischen Enthalpie ([math]h=w+\frac p\varrho[/math]) zusammen fassen

[math]I_W=\left(\frac{v^2}{2}+ g z+h\right)I_m=\left(\frac{v^2}{2}+ g z+c_p(T-T_0)\right)I_m[/math]

In der letzten Umformung ist die spezifische Enthalpie mit Hilfe des kapazitiven Gesetzes ersetzt worden. Die Enthalpie ist hier bei der Temperatur T0 gleich Null gesetzt worden.

Wärmestrahlung

Die Strahlung, die sich im Innern eines evakuierten Hohlraumes bei konstant gehaltener Temperatur der Wände aufbaut, ist schon im 19. Jahrhundert untersucht und theoretisch erklärt worden. Diese Hohlraumstrahlung bildet das Basismodell für viele Strahlungsphänomene. Bohrt man ein kleines Loch in den Hohlraum, entweicht eine Wärmestrahlung, deren Intensität nur von der Temperatur im Hohlraum und dem Winkel gegen die Mittelachse der Bohrung bestimmt wird. Nimmt man statt des Lochs eine materielle Oberfläche, ist die Intensität bei sonst gleichen Bedingungen kleiner als beim Loch, d.h. das Loch ist der beste aller Strahler.

Um die Strahlung zwischen zwei beliebig geformten Körpern verschiedener Temperaturen zu rechnen, müsst man beide Oberflächen in kleine Stücke zerlegen und für jedes Stück die Intensität in Funktion des Winkels gegen die Flächennormale sowie die Absorptionsfähigkeit bestimmen. Danach muss man über die Oberfläche beider Körper zweimal summieren (einmal für die Abstrahlung und einmal für die Absorption). Wir beschränken uns hier auf eine Summenformel für graue, kugelförmige Körper der Temperatur T in einer homogenen Umgebung der Temperatur T0. Der Nettoenergiestrom ist dann gleich

[math]I_W=\sigma\varepsilon A(T^4-T_0^4)[/math]

σ ist die universelle gültige Stefan-Boltzmann-Konstante und hat den Wert 5.67 10-8 W/m2K4. A ist die Oberfläche der Kugel. ε heisst Emissionszahl und beschreibt die Abweichung gegenüber einem idealen Strahler, also einem Loch im "Backofen" (ε = 1). Ein ideal verspiegelter Körper, der überhaupt nicht strahlt, würde mit ε = 0 beschrieben. Die oft gebrauchten Wörte schwarz (ε = 1), grau (0 < ε < 1) und weiss (ε = 0) sind in diesem Zusammenhang etwas irreführend, weil sich schwarz, grau und weiss nur auf das sichtbare Licht beziehen, mit der Emissionszahl aber der ganze Bereich von infrarot bis ultraviolett erfasst wird.

Ist der Körper nicht viel heisser als die Umgebung, kann ein lineares Näherungsgesetz formuliert werden

[math]I_W=\sigma\varepsilon A(T-T_0)(T^3+T^2T_0+TT_0^2+T_0^3)\approx 4T_0^3\sigma\varepsilon A(T-T_0)=G_W(T-T_0)[/math]

Bei kleiner Temperaturdifferenz verhält sich die Strahlung wie ein Wärmeleiter.

Beispiel: Die Solarkonstante, die Strahlungsenergie der Sonne, die pro Zeit und pro Fläche im Abstand der Erde von der Sonne weggeht, beträgt jW = 1367 W/m2. Welche Temperatur würde sich auf der Erde einstellen, wenn sich diese wie ein grauer Körper verhalten würde (Anteil der absorbierten Stahlung ist gleich dem Anteil der emittierten)?

Diese Frage lässt sich mit einer einfachen Energiebilanz für ein stationäres System beantworten

[math]I_{W_{ein}}=\varepsilon j_W\pi r^2=I_{W_{ab}}=\varepsilon 4\pi r^2\sigma T^4[/math]

Diese Energiebilanz liefert eine Temperatur von

[math]T=\sqrt[4]{\frac{j_W}{4\sigma}}[/math] = 278.6 K

Der so ermittelte Wert liegt nur 10°C unter dem effektiven Mittelwert der Atmosphäre in Bodennähe (15°C).

Wärmedurchgang

Ein Tasse besitzt einen Henkel, damit man sich nicht die Finger verbrennt. Füllt man die Tasse mit heissem Tee, fliesst die Wärme durch das Porzelan gegen die Oberfläche der Tasse, um dort an die Luft übertragen oder abgestrahlt zu werden. Die sich erwärmende Luft steigt auf und erzeugt längs der Tassenwand eine natürliche Konvektion. Um dieses komplexe Phänomen mit Konvektion und Strahlung einfach zu beschreiben, führt man eine empirische Grösse ein, die Wärmeübergangskoeffizient α genannt wird. Der Wärmeübergangskoeffizient gibt die Grösse der Energiestromdichte (Energiestrom pro Fläche) an, die pro Kelvin oder Grad Celsius Temperaturdifferenz zwischen Oberfläche und umgebender Luft fliesst. Wärmeübergangskoeffizienten führt man immer dann ein, wenn die Wärme auf eine Grenzschicht zwischen Festkörper und Gas oder Festkörper und Flüssigkeit trifft.

Der Wärmeleitwert einer Grenzschicht ist gleich Wärmeübergangskoeffizient mal Fläche

[math]G_W=A\alpha[/math]

Auf ihrem Weg vom Tee an die Luft muss die Wärme zwei Grenzschichten und die Tassenwand selber passieren. Weil Leitwerte bei Serieschaltung reziprok addiert werden, gilt für den Gesamtleitwert zwischen Tee und Luft

[math]\frac{1}{G_W}=\frac{1}{G_{W_{innen}}}+\frac{1}{G_{W_{Wand}}}+\frac{1}{G_{W_{aussen}}}=\frac{1}{A_{innen}\alpha_{innen}}+\frac{d}{A_{mittel} \lambda}+\frac{1}{A_{aussen}\alpha_{aussen}}[/math]

Die drei Flächen können gleich gesetzt werden, weil sie sich nicht sehr stark voneinander unterscheiden. Multipliziert man die Gleichung mit dieser Fläche, erhält man auf der linken Seite der Gleichung den Reziprokwert des Wärmedurchgangskoeffizienten, heute U-Wert genannt

[math]\frac 1U=\frac 1\alpha_i+\frac d\lambda+\frac 1\alpha_a[/math]

Der kleinste Teil-Leitwert legt die ungefähre Grösse des Gesamtleitwerts fest, d.h. der kleinste Leitwert ist oft nicht viel grösser als der Gesamtleitwert. So auch bei der Tasse. Weil der Wärmeübergangskoeffizient Oberfläche-Luft klein ist, was einer schlechten Wärmeleitung entspricht, staut sich dort die Wärme. Entsprechend hoch liegt die Temperatur an der Oberfläche der Teetasse.

Der Wärmedurchgangskoeffizient ist in der Bauphysik eine wichtige Grösse. Für Fenster, Türen, Wände und Dach wird der U-Wert (früher k-Wert) direkt angegeben. Um den Gesamtleitwert der Hülle eines Hauses zu ermitteln, Muss man dann nur noch die U-Werte mit den entsprechenden Flächen multiplizieren und zusammen zählen.

thermisches RC-Glied

"Der Tod ist vor etwa 12 Stunden eingetreten". Diese oder ein ähnliche Antwort gibt der Gerichtsmediziner in jedem zweiten Fernsehkrimi auf die entsprechende Frage des Kommissars. Die Todeszeit wird, falls diese nur wenige Stunden zurück liegt, meist aufgrund der Rektaltemperatur bestimmt. Der Rumpf des menschlichen Körpers kühlt in etwa wie ein thermisches RC-Glied aus

[math]\Delta T=\Delta T_0e^{-t/\tau}[/math] mit [math]\tau=R_WC=C/G_W[/math]

Machen wir dazu ein einfaches Modell. Vögel und Säugetiere setzen im Ruhezustand pro Kilogramm Körpergewicht und pro Stunde etwa eine Kilokalorie Wärme frei. Eine Kilokalorie entspricht dem Zahlenwert der spezifischen Wärmekapazität von Wasser (4.2 kJ/(°C kg)). Nimmt man einen Menschen von 80 kg, ergibt dies einen abfliessenden Energiestrom von

[math]I_W=\frac{mc}{3600s}[/math] = 93 W

Rechnet man die geringen Aktivitäten eines modernen Menschen dazu (sitzen, reden, schreiben), kommt man auf etwa 100 W. Die Heizleistung einer Gemeindeversammlung mit 150 Stimmbürgerinnen und Stimmbürger beträgt demnach etwa 15 kW. Nun sind die Leute so bekleidet, dass sie bei 20°C nicht frieren. Folglich beträgt der Leitwert (Kleidung und äusser Fettschicht) etwa

[math]G_W=\frac{I_W}{\Delta T}=\frac{100 W}{17 K}[/math] = 5.9 W/K

Geht man davon aus, dass die Wärmekapazität des 80 kg schweren Menschen etwa der Kapazität von 70 Litern Wasser entspricht, ergibt sich ein Wert von 294 kJ/°C. Die Zeitkonstante τ beträgt dann neunundvierzigtausend Sekunden oder 13.8 Stunden. Die empirisch gemessen Kurve zeigt eine sigmoidalen Verlauf (Plateau, steil abfallend, asymptotisch), weshalb sie oft mit zwei überlagerten Exponentialfunktionen approximiert wird. Das anfängliche Plateau dürfte von den chemischen Reaktionen herrühren, die auch nach Eintritt des Todes weiter Wärme produzieren. Als Faustregel gilt bei normal bekleideten Leichen bis zu einer Temperatur von 25°C bei einer Aussentemperatur von 20°C: Abkühlung pro Stunde um 1°C ab zwei Stunden nach dem Zeitpunkt des Todes.

Kontrollfragen

Materialien

Zurück zum Inhalt