Raumzeit

Aus SystemPhysik

In der Relativitätstheorie werden Raum und Zeit zur vierdimensionalen Raumzeit vereinigt. Ein Raum-Zeit-Punkt heisst dann Ereignis. Das Skalarprodukt wird auf die Zeit ausgedehnt, womit der Abstandsbegriff eine neue Bedeutung bekommt. Die räumliche Drehung wird auf zur Lorentz-Transformation erweitert. Die Verteilung der Energie (Masse) und des Impulses beeinflussen die Geometrie der Raumzeit, d.h. der Energie-Impuls-Tensor bestimmt die Krümmung der Raumzeit.

Raumzeit in der speziellen Relativitätstheorie

Motivation

Die Gesetze der Newtonschen Punktmechanik gelten in allen Inertialsystemen, weil das Grundgesetz der Translationsmechanik nur einen Bezug zwischen den Impulsstromstärken oder Impulsquellenstärken, den Kräften, und der Beschleunigung des Körpers herstellt. In der Beschreibung des elektromagnetischen Feldes, den Maxwell-Gleichungen, taucht nun aber die Lichtgeschwindigkeit c als Naturkonstante auf. Sollen die Gesetze der Elektrodynamik in allen Intertialsystemen gültig sein, muss sich das Licht für alle Beobachter in den verschiedenen Inertialsystemen gleich schnell fortpflanzen.

Bewegt sich ein Lichtpuls in Richtung der x-Koordinate, gilt für die Strecke zwischen zwei Punkten sowie die Zeitpunkte, zu denen der Lichtblitz dort vorbeiflizt, der folgende Zusammenhang

[math]c = \frac {x_2 - x_1}{t_2 - t_1} = \frac {\Delta x}{\Delta t}[/math]

oder für unmittelbar benachbarte Punkte

[math]c = \frac {dx}{dt}[/math]

Damit die Lichtgeschwindigkeit in der Raumzeit von jedem Beobachter gleich schnell ist, muss somit folgende Bedingung gelten

[math]cdt - dx = 0[/math]

Diese Bedingung ist nicht eindeutig und lässt sich so nicht auf alle drei Dimensionen des Raumes ausdehnen. Folglich muss man verlangen, dass das Quadrat der Lichtgeschwindigkeit für alle Beobachter auf den verschiedenen Inertialsystemen gleich gross ist, was zu folgender Bedingung führt

[math]c^2dt^2 - dx^2 - dy^2 - dz^2 = c^2dt^2 - ds^2 = 0[/math]

Minkowski-Metrik

Minkowski-Diagramm

Im Minkowski-Diagramm können die Verhältnisse geometrisch dargestellt und analysiert werden. Wegen der komplexen Eigenschaft der Zeitkomponente wird dort die Drehung der Zeitachse mit umgekehrtem Vorzeichen wie die Drehung der Koordinatenachse dargestellt.

Raumzeit in der allgemeinen Relativitätstheorie

Nichteuklidische Geometrien

Grundlage zur Beschreibung der Raumzeit (ct,x,y,z) in der allgemeinen Relativitätstheorie ist die Riemannsche Geometrie. Die Koordinatenachsen sind hier nichtlinear, was als Raumkrümmung interpretiert werden kann. Für die vierdimensionale Raumzeit werden die gleichen mathematischen Hilfsmittel wie zur Beschreibung einer zweidimensionalen Kugeloberfläche oder für Sattelflächen herangezogen. Als unumstößlich angesehene Aussagen der euklidischen Geometrie, insbesondere das Parallelenaxiom, müssen in diesen Theorien aufgegeben und durch allgemeinere Beziehungen ersetzt werden. Die kürzeste Verbindung zwischen zwei Punkten ist hier beispielsweise kein Geradenteilstück mehr. Einer Geraden in der euklidischen Geometrie entspricht die Geodäte in der nicht-euklidischen Welt; im Falle einer Kugeloberfäche sind die Geodäten die Großkreise. Die Winkelsumme im - aus Geodätenabschnitten bestehenden - Dreieck ist auch nicht mehr 180 Grad. Im Falle der Kugeloberfläche ist sie größer als 180 Grad, im Falle von Sattelflächen dagegen kleiner.

Raumzeit-Krümmung

Die Krümmung von Raum und Zeit wird durch Masse, Strahlung und Druck verursacht; diese Größen bilden zusammen den Energie-Impuls-Tensor und gehen in die Einsteingleichungen als Quelle des Gravitationsfeldes ein. Die daraus resultierende krummlinige Bewegung von kräftefreien Körpern entlang der Geodäten wird der Gravitationsbeschleunigung zugeschrieben; in diesem Modell existiert so etwas wie eine Gravitationskraft nicht mehr. In einem infinitesimalen Raumabschnitt (lokale Karte) besitzt das erzeugte Gravitationsfeld stets die flache Metrik der speziellen Relativitätstheorie. Dies wird durch eine konstante Raumkrümmung mit dem Faktor g/c2 beschrieben. Die Krümmung der Weltlinien (Bewegungskurven in der Raumzeit) aller kräftefreien Körper in diesem Raumabschnitt ist gleich.

In vielen populären Darstellungen der allgemeinen Relativitätstheorie wird häufig nicht beachtet, dass nicht nur der Raum, sondern auch die Zeit gekrümmt sein muss, um ein Gravitationsfeld zu erzeugen. Dass stets Raum und Zeit gekrümmt sein müssen, ist anschaulich leicht zu verstehen: Wäre nur der Raum gekrümmt, so wäre die Trajektorie eines geworfenen Steines immer dieselbe, egal welche Anfangsgeschwindigkeit der Stein besäße, da er stets nur dem gekrümmten Raum folgen würde. Nur durch die zusätzliche Krümmung der Zeit können die verschiedenen Trajektorien zustande kommen. Im Rahmen der ART kann dies auch mathematisch gezeigt werden.

Im normalen, dreidimensionalen Raum ist nur die Projektion der Weltlinien auf die Bewegungsebene sichtbar. Hat der Körper die Geschwindigkeit v, so ist die Weltlinie gegenüber der Zeitachse geneigt, und zwar um den Winkel [math]\tan \alpha=v/c[/math]. Die Projektion der Bahn wird mit steigendem v um den Faktor [math]1/\sin \alpha[/math] länger, der Krümmungsradius um den gleichen Faktor [math]1/\sin \alpha[/math] größer, die Winkeländerung also kleiner. Die Krümmung (Winkeländerung pro Längenabschnitt) ist daher um den Faktor [math]sin^2\alpha[/math] kleiner.

Mit

[math]\sin \alpha=\frac{v}{c}\frac{1}{\sqrt{1 + \frac{v^2}{c^2}}}[/math]

folgt dann aus der Weltlinienkrümmung g/c2 für die beobachtete Bahnkrümmung [math]R[/math] im dreidimensionalen Raum

[math]R=\frac{g}{v^2} \cdot \left(1 + \frac{v^2}{c^2} \right)[/math].

Symmetrien

Die Raumzeit ist charakterisiert durch eine Anzahl von Symmetrien, die sehr wichtig für die darin geltende Physik sind. Zu diesen Symmetrien zählen neben den Symmetrien des Raumes (Translation, Rotation) auch die Symmetrien unter Lorentztransformationen (Wechsel zwischen Bezugssystemen verschiedener Geschwindigkeit). Letzteres stellt das Relativitätsprinzip sicher.

Weblinks