Drehimpulsquelle und Bahndrehimpuls

Aus SystemPhysik

Ein System kann Impuls speichern und auf drei verschiedene Arten austauschen. Die Stärke des leitungsartigen Impulstransports bezüglich der Systemoberfläche und des quellenartigen Austausches mit dem Gravitationsfeld nennt man Kraft. Eine analoge Unterscheidung macht beim Drehimpuls wenig Sinn, weil der Drehimpuls nicht lokalisierbar ist. Eine Dichte oder eine Stromdichte wie bei der elektrischen Ladung, dem Impuls oder der Entropie lässt sich beim Drehimpuls nicht definieren.

Geht man aber von ganzen Bauteilen aus, darf sehr wohl ein Drehimpulsinhalt, ein Drehimpulsstrom oder eine Drehimpulsquelle definiert werden. Drehimpuls kann aber auch in der gegenseitigen Bewegung zweier Körper als Bahndrehimpuls gespeichert sein.

Lernziele

Drehimpulsströme

Drehimpulskreisstrom in einer Ständerbohrmaschine

Drehimpuls, der in einer Antriebswelle in seine eigene Richtung transportiert wird, verdreht die Welle zu einer Linksschraube. Wird ein Stab in Richtung einer Rechtsschraube verformt, fliesst der Drehimpuls gegen seine Bezugsrichtung. Drehimpulsströme werden wie elektrische Ströme oft im Kreis herum geführt, wie man am Beispiel der Ständerbohrmaschine gut erkennen kann. Sobald der Bohrer am Werkstück ansetzt, bildet sich ein Keisstrom aus. Dabei belädt der Motor den Drehimpulsstrom mit der Energie, die dieser bei der Schneide des Bohrers wieder frei setzt. Verfolgt man den ganzen Kreis, stellt man fest, dass der Drehimpulsstrom beim vorwärts und rückwärts Fliessen das Bauteil auf Torsion beansprucht. Im Bohrtisch und der Halterung des Motors erzeugt der seitwärts fliessende Drehimpuls dagegen Biegung. Legt man eine Schnitt- oder Referenzfläche quer zum Drehimpulsstrom, nennt man die beiden so definierten Drehmoment je nach Belastung Torsionsmoment oder Biegemoment.

Torsion

Drehimpulsströme lassen sich nur indirekt, über die sie begleitenden Impulsströme, nachweisen. Wird ein Bauteil auf Torsion belastet, muss der Drehimpulsstrom von einem Impulsstrom umhüllt sein. Zeigt die z-Achse in Richtung des Drehimpulstransportes, wird die in z-Richtung fliessende Drehimpulskomponente von einem z-Impulsstrom vollständig umhüllt. Stellt man sich die Stromlinien des Impulswirbels als Höhenlinie vor, entspricht das Volumen des zugehörigen Berges der Stärke des Drehimpulsstroms. Im geschlossenen Rohr zeichnen die Stromlinien des Impulswirbels einen voluminösen Tafelberg, während beim offenen U-Rohr nur eine atollförmige Struktur mit kleinem Volumen zu erkennen ist. Deshalb ist ein offenes U-Profil viel weniger torsionssteif als ein geschlossenes Rohr. Eine analoge "Verweichlichung" stellt sich ein, wenn man ein Kartonrohr längs einer Mantellinie aufschlitzt. Der im Karton fliessende Impulsstrom wird beim Schlitz zur Umkehr gezwungen. Durch das Aufschneiden des Rohres verwandelt sich der breite Tafelberg in ein schmales Atoll. Weil man die Dichte eines quer fliessenden Impulsstromes Schubspannung nennt, spricht der Ingenieur hier von der Schubflussumkehr beim Schlitz.

Biegung

Verteilung der Impulsströme bei Biegung

Drehimpuls, der quer zu seiner Bezugsrichtung fliesst, belastet das Bauteil auf Biegung. Im gebogenen Balken begrenzen seitlich verlaufende Impulsströme den Drehimpulstransport. Fliesst zum Beispiel z-Drehimpuls in x-Richtung, muss dieser Transport auf beiden Seiten, also in y-Richtung, durch einen x-Impulsstrom begrenzt sein. Ein H-Balken ist deshalb besonders biegesteif, weil in seinen Gurten grosse Impulsströme fliessen können. In einem Gurt fliesst der Impulsstrom vorwärts (Druck) und im andern rückwärts (Zug). So kann zwischen den beiden Gurten ein starker Drehimpulsstrom fliessen. Ein Vierkantprofil hat eine ähnliche Biegesteifigkeit wie der H-Träger, weist aber - wie weiter oben schon erklärt worden ist - zusätzlich noch eine grosse Torsionssteifigkeit auf.

Bei einem gebogenen Balken mit einem vollen Querschnitt nehmen die Zug- und Druckspannungen mit dem Abstand zur unbelasteten Mitte (neutralen Fasern) zu. Die Impulsströme sind demnach um so intensiver, je weiter entfernt sie von den neutralen Fasern durch den Balken fliessen. Analog zur Torsion darf man nun behaupten, dass der Drehimpulstrom in der Mitte des Querschnitts, bei den neutralen Fasern, am stärksten ist und nach aussen progressiv abnimmt: der Drehimpulsstrom nimmt in einem beliebigen Querschnitt an den Stellen am stärksten ab, an denen die grössten Impulsstromdichten auftreten. An den beiden Aussenflächen, dort wo die Impulsströme am intensivsten sind, geht die Stärke des Drehimpulsstroms auf Null zurück.

Spiegel

Betrachtet man die Bohrmaschine im Spiegel, fliesst der Drehimpuls in die andere Richtung, da im Spiegel eine Links- in eine Rechtsschraube übergeht. Weil gleichzeitig die Winkelgeschwindigkeit das Vorzeichen vertauscht, ändert sich am Energietransport nichts. Hinter dem Spiegel verwandelt sich ein rechtshändiges Koordinatensystem in ein linkshändiges, rechtsdrehende Propeller werden zu linksdrehenden und die Magnetfelder umhüllen den Strom im entgegen gesetzten Sinn. Dennoch ist die Welt hinter dem Spiegel für uns in Ordnung. Erst die neuere Physik hat gezeigt, dass es Prozesse gibt, die hinter dem Spiegel anders verlaufen als in der realen Welt.

Getriebe

Planetengetriebe

Bei jedem Getriebe treffen mindestens drei Drehimpulsströme aufeinander. Im Getriebe selber wird die Energie von einem Drehimpulsstrom auf einen andern umgeladen, wobei oft ein Drehimpulstrom ohne Energiebeladung über das Gehäuse fliesst. Anders beim Planetengetriebe! Bei diesem Gerät werden alle drei Drehimpulsströme über Wellen zu- oder abgeleitet. Da im stationären Betrieb aus der Drehimpulsbilanz ein Knotensatz wird, muss die Summe über alle drei Drehmomente gleich Null sein

[math]M_S+M_H+M_T=0[/math]

Arbeitet das Planetengetriebe reibungsfrei, ist die Summe über alle Energieströme (Leistungen der Drehmomente) ebenfalls gleich Null

[math]\omega_S M_S+\omega_H M_H+\omega_T M_T=0[/math]

Diese zwei Gleichungen verknüpfen zusammen mit der kinematischen Grundgleichung sechs Grössen (drei Winkelgeschwindigkeiten und drei Drehmomente).

Hebelgesetz

Impulsstrom induziert Drehimpulsstrom

In einem verdrehten Balken fliesst der Drehimpuls in seine Bezugsrichtung, in einem gebogenen Balken seitwärts. Zudem wird jeder Drehimpulsstrom durch Impulsstöme begrenzt (ein umhüllender Wirbelstrom bei Torsion, zwei Berandungsströme bei Biegung). Diese bildhafte Vorstellung ist wohl korrekt, aber leider noch nicht umfassend. Wie beim Impuls treten beim Drehimpuls neben den eigentlichen Strömen auch noch Quellen auf. Diese Quellen werden durch das Hebelgesetz beschrieben.

Betrachten wir dazu ein Körper, der an einem Galgen hängt. Der Galgen muss den vom Graviationsfeld zugeführten z-Impuls ableiten. Im Seil herrscht Zug, weil der Impuls gegen seine Bezugsrichtung abgeführt wird. Oben im Querbalken erzeugt dieser Impulsstrom eine Hebelwirkung. Der dort gegen die x-Achse fliessende z-Impulsstrom würde den ganzen Galgen in negativer Richtung um die y-Achse in Rotation versetzen, wenn dieser nicht im Boden verankert wäre. Wir erklären nun diese Wirkung mit Hilfe einer Drehimpulssenke (negative Quelle), deren Stärke proportional zur Stärke des querfliessenden Impulsstromes und zum zugehörigen Stromabschnitt ist

[math]\Sigma_{Ly}=\Delta x I_{pz}[/math]

Hier sind sowohl die Drehimpulssenke ΣLy als auch Δx negative Grössen. Die Drehimpulssenke wird nun vom Boden her gespiesen. Deshalb erfährt der vertikale Teil des Galgens eine konstante Biegung. Im horizontalen Teil nimmt die Biegung in Richtung der x-Achse ab. Im vertikalen Teil des Galgens fliesst der von der Last herkommende z-Impuls nach unten. Dieser primäre Impulsstrom wird durch einen viel stärkeren Kreisstrom überlagert, welcher den von unten nach oben fliessenden Drehimpulsstrom berandet.

Eine in positive x-Richtung fliessender z-Impulsstrom würde gemäss der oben formulierten Beziehung eine y-Drehimpulsquelle erzeugen. Nun induziert auch ein x-Impulsstrom, der in z-Richtung fliesst eine Senke bezüglich des y-Drehimpulses. Fasst man beide Einflüsse zusammen, erhält man

[math]\Sigma_{Ly}=\Delta x I_{pz}-\Delta z I_{px}[/math]
Kräftepaar auf einen Körper

Indem man die Indices x, y und z zyklisch vertauscht, erhält man ein in Komponenten dargestelltes Vektorprodukt. Dieses Vektorprodukt beschreibt das Drehmoment eines Kräftepaares. Tritt nämlich ein beliebiger Impulsstrom in einen Körper ein und an einer andern Stelle wieder aus, bilden die Stromstärken an der Ein- und Austrittsfläche ein Kräftepaar (F, -F). Die durch den querfliessenden Impuls erzeugte Drehimpulsquelle darf nun als Drehmoment dem Kräftepaar zugeordnet werden

[math]\vec M=\vec r\times\vec F[/math]

Hier zeigt der Vektor r von der als negativ bezeichneten zur positiven Kraft des Paares.

Beispiel 1: Beim waagrechten, zweiarmigen Hebel mit angehängten Lasten, fliesst von beiden Seiten je ein z-Impulsstrom gegen die Drehachse (erstes Bild unten). Dabei erzeugt der in positive x-Richtung fliessende Strom eine Quelle und der von der andern Seite her kommende Strom eine Senke bezüglich des y-Drehimpulses. Zum Ausgleich muss im Hebel y-Drehimpuls von den Quellen zu den Senken, also in x-Richtung, transportiert werden. Dieser Drehimpusstrom nimmt von der Einleitung des einen z-Impulsstromes her gegen die Drehachse linear zu, um dann bis zur Stelle, wo der andere z-Impulsstrom eingeleitet wird, wieder auf Null abzufallen. Das Hebelgesetz sorgt dafür, dass sich die Quellen und Senken die Waage halten. Die den Drehimpulsstrom begrenzenden x-Impulsströme belasten den Hebel auf Zug (Oberseite des Hebels] und auf Druck (Unterseite des Hebels), wobei diese Stromstärken bei der Drehachse am stärksten sind. Dort würde der Hebel bei Überlast auch brechen.

Beispiel 2: Man zerbricht einen Bleistift, indem man ihn mit beiden Händen umfasst und mit abgespreizten Daumen abspreizt gegen die restlichen Finger drückt (zweites Bild unten). So erzeugt man mit beiden Händen im Bleistift je eine querfliessenden Impulsstrom (grün), die eine Quelle bzw. eine Senke für bezüglich des Drehimpulses bilden (nicht skizziert). Der Drehimpuls der von den Quellen der einen Hand zu den Senken der andern fliesst, erzeugt einen Impulswirbelstrom (rot), der den Stift schlussendlich zerstört.

Beispiel 3: Wirbelströme bilden sich auch dann, wenn das Hebelgesetz nicht direkt angewendet werden kann. Setzt man zum Beispiel einen Bügel unter Zug (drittes Bild unten), erzeugt der durchfliessende Impulsstrom (rot) beim seitwärts Fliessen Quellen und Senken bezüglich des Drehimpulses (nicht skizziert). Der dadurch ausgelöste Drehimpulsstrom muss wiederum von Wirbelströmen umflossen sein (grün in den beiden Schenkeln und rot im mittleren Teil).

Bahndrehimpuls

Impuls und Drehimpuls bei rotierender Scheibe

Eine um ihre Symmetrieachse rotierender Unterlegscheibe speichert eine stationäre Impulsverteilung. Wohl bewegt sich jeder Teil der Scheibe auf einer Kreisbahn, doch ändert sich dadurch die räumliche Verteilung des Impulses nicht. Die rotierende Unterlegscheibe speichert zudem Drehimpuls, wobei der Impuls das mit Drehimpuls "gefüllte" Gebiet umgibt. Nun kann man jedem Teil der rotierenden Unterlegscheibe einen Bahndrehimpuls bezüglich des Zentrums der Scheibe zuordnen. Dieser Bahndrehimpuls ist gleich Impuls mal Abstand zur Scheibenmitte.

Jeder Teilkörper eines Systems besitzt einen Bahndrehimpuls, dessen Betrag gleich Impuls mal Abstand zum Gesamtmassenmittelpunkt ist. Der Vektor des Bahndrehimpulses steht normal zur Ebene, welche von einer Geraden in Richtung des Impulses und Massenmittelpunkt gebildet wird

[math]\vec L_B=\vec r\times\vec p[/math]

Der Vektor r zeigt vom Massenmittelpunkt des Gesamtsystems zum entsprechenden Teilkörper. Zudem ist der Impuls p des Teilkörpers vom Ruhesystem des Massenmittelpunktes aus zu messen.

Die Definition des Bahndrehimpulses ermöglicht nun die Berechnung des Massenträgheitsmoments. Dazu zerlegen wir den mit der Winkelgeschwindigkeit ω rotierenden Körper in ganz kleine Teile. Der Gesamtdrehimpuls ist dann gleich der Summe über alle Bahndrehimpulse der Einzelteile

[math]\vec L=\sum_i(\vec r_i\times\vec p_i)=\sum_i(\vec r_i\times\vec m_i v_i)=\sum_i\left(\vec r_i\times\vec m_i (\vec \omega\times r_i)\right)[/math]

Die Winkelgeschwindigkeit kann ausgeklammert und das doppelte Vektorprodukt durch ein gewöhnliches Produkt ersetzt werden. Dazu führen wir den Radius Ri ein, der von der momentanen Drehachse radial weg zum Teilkörper i zeigt

[math]L=\left(\sum_i m_i R_i^2\right)\omega=J\omega[/math]

Das Massenträgheitsmoment eines Körpers bezüglich einer momentanen Drehachse ist gleich der Summe über alle Massen seiner Teile mal das Quadrat des zugehörigen Abstandes von der Drehachse.

Mit Hilfe der allgemeinen Formel [math]J=\sum_i m_i R_i^2[/math] lässt sich das Massenträgheitsmoment einfacher Körper bezüglich einer ausgewählten Drehachse berechnen

Massenträgheitsmoment bezüglich beliebiger Achse durch Mitte der Vollkugel: [math]J_K=\frac 25 mr^2[/math]
Massenträgheitsmoment bezüglich Symmetrieachse eines Vollzylinders: [math]J_Z=\frac 12 mr^2[/math]
Massenträgheitsmoment bezüglich Achse normal und mittig zu langem Stab: [math]J_{St}=\frac{ml^2}{12}[/math]

Bahn- und Eigendrehimpuls

Motorrad aus drei Körpern

Das System Erde-Mond weist drei verschiedene Speicher für Drehimpuls auf. Erde und Mond speichern infolge ihrer eigenen Rotation Eigendrehimpuls. Zusätzlich enthält das System noch Bahndrehimpuls. Der Eigendrehimpuls berechnet sich aus Massenträgheitsmoment und Winkelgeschwindigkeit, der Bahndrehimpuls ist gleich [math]\vec r_{Mond}\times\vec p_{Mond}[/math] und [math]\vec r_{Erde}\times\vec p_{Erde}[/math], wobei der Distanzvektor r vom Gesamtmassenmittelpunkt zum Zentrum des jeweiligen Himmelskörpers zeigt. Ein interessantes Phänomen bildet die Gezeitenreibung. Erde und Mond bremsen sich über das Gravitationsfeld in ihrer Rotation gegenseitig ab. Die Erde hat den kleineren Mond schon dazu gebracht, dass er ihr immer die gleiche Seite zuwendet und der Mond hat die Länge des Erdentages schon ziemlich gedehnt. Im Endzustand werden sich Erde und Mond immer die gleiche Seite zuwenden. Infolge Gezeitenreibung geht der Eigendrehimpuls von Erde und Mond nach und nach in den Bahndrehimpuls des Gesamtsystems über. Damit das System Erde und Mond diesen Drehimpuls aufnehmen kann, entfernen sich die beiden Himmelskörper immer weiter voneinander. Vor mehreren hundert Millionen Jahren hatte das Jahr über 400 Tage und der Vollmond erschien deutlich grösser am Himmel.

Beispiel Motocross: Ein durch die Luft fliegendes Motorrad kann in seiner Rotation um die Querachse mit Brems- und Gashebel beeinflusst werden. Denkt man sich das Motorrad in die beiden Räder und den Rest zerlegt, darf jedem dieser drei Körper ein Eigen- und ein Bahndrehimpuls zugeschrieben werden. Dennoch besitzt das Gesamtsystem nur drei Speicher für Drehimpuls. Neben den beiden Rädern, die je um ihren eigenen Schwerpunkt rotieren, müssen der Drehimpuls des Motorrads (M für Motorrad) und die Bahndrehimpulse der beiden Räder (h für hinten und v für vorne) zu einer Einheit zusammengefasst werden

Flüssigkeitsbild
[math]L_h=J_h\omega_h[/math]
[math]L_v=J_v\omega_v[/math]
[math]L=L_M+L_{Bahn_M}+L_{Bahn_h}+L_{Bahn_v}=(J_M+m_Mr_M^2+m_hr_h^2+m_vr_v^2)\omega[/math]

Die Radien rM, rh und rvzeigen vom Gesamtmassenmittelpunkt zu den Massenmittelpunkten der drei Teilkörper. Im Flüssigkeitsbild sind somit drei Töpfe zu zeichnen, zwischen denen Drehimpuls ausgetauscht werden kann. Werden die Bremsen gezogen, gleichen sich die Niveaus aus. Mit Gas geben kann der Niveauunterschied zwischen Motorrad und Hinerrad vergrössert werden. Im skizzierten Flüssigkeitsbild drehen die beiden Räder unterschiedlich schnell und das Motorrad kippt rückwärts weg. Mit Hilfe der Bremse kann nun der Motorradfahrer Drehimpuls aus den Rädern an den Töff abfliessen lassen. Bremst er zu stark, dreht sich das ganze Motorrad zum Schluss wie ein starrer Körper. Die zugehörige Winkelgeschwindigkeit kann direkt dem Flüssigkeitsbild entnommen werden.

Kraft und Drehmoment

Die Stärken der Impuls- und Drehimpulsströme bezüglich eines Körpers nennt man Kräfte und Drehmomente. Um den Transport dieser beiden vektorartigen Grösen zu beschreiben, muss ein raumfestes Koordinatensystem eingeführt werden. Dieses Weltsystem zerlegt Impuls und Drehimpuls in sechs Komponenten, die einzeln zu bilanzieren sind und deren Ströme in je einem Strombild dargestellt werden können. Zwischen Strom und Material- oder Bauteilreaktion gelten folgende Zusammenhänge

  • bei Zugspannung fliesst der zugehörige Impuls vorwärts, bei Druckbelastung rückwärts
  • bei Scherspannung wird die entsprechende Impulskomponente seitwärts transportiert
  • die neun Komponenten der Impulsstromdichte (jede Impulskomponente kann in jede Richtung transportiert werden) können als 3x3-Matrize geschrieben werden. Diese Matrize bildet den Spannungstensor.

Kontrollfragen

Zurück zum Inhalt