RC Glied
Entlädt ein Speicher seinen Inhalt über einen Widerstand, heisst das System RC-Glied. RC-Glieder findet man in
- der Elektrizitätslehre: Kondensator, der über einen Widerstand kurz geschlossen wird
- der Translationsmechanik: Körper, der über eine raue, horizontale Fläche gleitet
- der Rotationsmechanik: Schwungrad, das abgebremst wird
- der Thermodynamik: warmer Körper, der auskühlt
lineares RC-Glied
Besitzt der Speicher eine konstante Kapazität und hängt der Widerstand nicht von der Stromstärke ab, liegt ein Lineares RC-Glied vor. Lineare RC-Glieder entladen mit exponentiell abnehmender Stromstärke. Zur Herleitung der Differenzialgleichung geht man von der Bilanz aus und ersetzt dann Stromstärke und Inhaltsänderungsrate mit Hilfe der konstitutiven Gesetze
Bilanz | [math]I_M=\dot M[/math] |
kapazitives Gesetz | [math]\dot M=C_M\dot{\Delta\varphi_M}[/math] |
resistives Gesetz | [math]I_M=-\frac{1}{R_M}\Delta\varphi_M[/math] |
eingesetzt | [math]-\frac{1}{R_M}\Delta\varphi_M=C_M\dot{\Delta\varphi_M}[/math] |
aufgelöst | [math]\Delta\varphi_M+R_MC_M\dot{\Delta\varphi_M}=0[/math] |
mit Zeitkonstanten [math]\tau=R_MC_M[/math] | [math]\Delta\varphi_M+\tau\dot{\Delta\varphi_M}=0[/math] |
[math]\Delta\varphi[/math] bezeichnet hier den Potenzialunterschied zwischen innen und aussen. Durch Separation und Integration dieser Gleichung erhält man als Lösungsfunktion
- [math]\Delta\varphi_M=\Delta\varphi_{M_0}e^{-t/\tau}[/math]
Elektrische RC-Glieder sind verhalten sich meist linear. Mechanische RC-Glieder zeigen das exponentielle Verhalten nur, falls die Reibung linear ist (Impulsstrom oder Kraft proportional zur Geschwindigkeit bzw. Drehimpulsstrom oder Drehmoment proportional zur Winkelgeschwindigkeit). In der Thermodynamik nimmt man statt der Basismenge, der Entropie, meist die Energie. Dann verhalten sich viele Körper in guter Näherung linear.