Phasenraum

Aus SystemPhysik
Wechseln zu: Navigation, Suche

Begriff

Der Phasenraum (auch: Zustandsraum) wird von den Zustandsgrössen eines dynamischen Systems aufgespannt. Die Zustandsgrössen erscheinen in einem systemdynamischen Modell als Töpfe (stocks).

In der Mechanik bilden Ort und den Impuls bzw. Winkel und Drehimpuls und in der Thermodynamik Entropie, Volumen und Stoffmenge die eigentlichen Zustandsgrössen, die natürlichen Variablen des Zustandsraumes. In der Biologie wird der Zustandsraum zum Beispiel durch die Populationsbestände konkurrierender Spezies aufgespannt.

Dynamik

In der Mechanik kann der Zustandsraum hochdimensional werden, wenn etwa die Bewegung vieler Teilchen zugleich erfasst werden soll. Die Menge aller Punkte, die von einem bestimmten Anfangspunkt aus die zeitliche Entwicklung des Systems bestimmen, heißt Trajektorie. Trajektorien im Phasenraum sind kreuzungsfreie Kurven. Interessant ist die Frage der Ergodizität (bzw. Quasiergodizität). (Quasi)Ergodizität bedeutet, dass die Trajektorie den gesamten Phasenraum ausfüllt, bzw. jedem Punkt (quasi) beliebig nahe kommt.

Phasenraumtrajektorien verlaufen stets in einer bestimmten Richtung. Nimmt der Abstand zwischen annähernd parallel verlaufenden Trajektorien in einem Bündel ab, sinkt das Phasenraumvolumen. Das System nennt man dann dissipativ. Dissipative Systeme verlieren Energie durch Entropieproduktion. Systeme mit konstantem Phasenraumvolumen heißen (Energie-) konservative Systeme. Mathematisch wird dieser Sachverhalt durch den Satz von Liouville ausgedrückt. Die Lösungstrajektorien vieler dynamischer Systeme liegen unterschiedlich dicht im Raum. Diese Eigenschaft wird mit der Phasenraumdichte, die auch in der statistischen Mechanik von zentraler Bedeutung ist, beschrieben.

Der Phasenraum gibt eine Möglichkeit, die zeitlichen Entwicklungen dynamischer Systeme graphisch zu analysieren. Diese Darstellung heißt Phasenportrait oder Phasenraumportrait. Einige charakteristische Strukturen des Phasenraums können so auch ohne explizite Berechnung der Lösungsfunktionen erfasst werden, z. B. kritische Punkte, an denen sich das System zeitlich nicht ändert. Durch eine lineare Stabilitätsanalyse kann auch bestimmt werden, ob Trajektorien in der Nähe dieser Punkte angezogen oder abgestoßen werden. So lässt sich bereits das qualitative Verhalten der zeitlichen Entwicklung abschätzen.

Anwendungsgebiete

Das Konzept des Phasenraums wird in vielen verschiedenen wissenschaftlichen Disziplinen benutzt und zum Teil unterschiedlich spezifiziert: