Energiebilanz: Unterschied zwischen den Versionen

Aus SystemPhysik
Inhalt hinzugefügt Inhalt gelöscht
Zeile 46: Zeile 46:
Beim [[starrer Körper|starren Körper]] folgt die Energiebilanz aus der [[Impulsbilanz]] und der [[Drehimpulsbilanz]]. Nimmt man die Impulsbilanz
Beim [[starrer Körper|starren Körper]] folgt die Energiebilanz aus der [[Impulsbilanz]] und der [[Drehimpulsbilanz]]. Nimmt man die Impulsbilanz


:<math>\sum_i\vec F_i + m\vec g = \dot {\vec p} = m \dot {\vec v}_{MMP}</math>
:<math> \sum_i\vec F_i + m\vec g = \dot {\vec p} = m \dot {\vec v}_{MMP}</math>


und multipliziert diese mit der [[Geschwindigkeit]] des [[Massenmittelpunkt]]es, erhält man
und multipliziert diese mit der [[Geschwindigkeit]] des [[Massenmittelpunkt]]es, erhält man


:<math>\sum_i \vec F_i \cdot \vec v_{MMP} = m(\dot {\vec v}_{MMP} \cdot \vec v_{MMP} - \vec g \cdot \vec v_{MMP}) = \dot W_{kin} + \dot W_G</math>
:<math> \sum_i \vec F_i \cdot \vec v_{MMP} = m(\dot {\vec v}_{MMP} \cdot \vec v_{MMP} - \vec g \cdot \vec v_{MMP}) = \dot W_{kin} + \dot W_G</math>


Die Drehimpulsbilanz
Die Drehimpulsbilanz


:<math>\sum_{j} \vec M_j + \sum_{i} (\vec r_i \times \vec F_i) = \dot {\vec L}</math>
:<math> \sum_{j} \vec M_j + \sum_{i} (\vec r_i \times \vec F_i) = \dot {\vec L}</math>


muss nun entsprechend mit dem zugehörigen [[Potenzial]], der [[Winkelgeschwindigkeit]], multipliziert werden
muss nun entsprechend mit dem zugehörigen [[Potenzial]], der [[Winkelgeschwindigkeit]], multipliziert werden


:<math>\left(\sum_{j} \vec M_j\right) \cdot \vec \omega + \left(\sum_{i} (\vec r_i \times \vec F_i)\right) \cdot \vec \omega = \dot {\vec L} \cdot \vec \omega = \dot W_{rot}</math>
:<math> \left(\sum_{j} \vec M_j\right) \cdot \vec \omega + \left(\sum_{i} (\vec r_i \times \vec F_i)\right) \cdot \vec \omega = \dot {\vec L} \cdot \vec \omega = \dot W_{rot}</math>


Fasst man nun beide Gleichungen zusammen, erhält man die Leistungsbilanz bezüglich eines starren Körpers
Fasst man nun beide Gleichungen zusammen, erhält man die Leistungsbilanz bezüglich eines starren Körpers


:<math>\sum_i P(\vec F_i) + \sum_j P(\vec M_j) = \dot W_{kin} + \dot W_G + \dot W_{rot}</math>
:<math> \sum_i P(\vec F_i) + \sum_j P(\vec M_j) = \dot W_{kin} + \dot W_G + \dot W_{rot}</math>


Man beachte, dass
Man beachte, dass
Zeile 71: Zeile 71:
Integriert man die Leistungsbilanz über die Zeit auf, erhält man die Arbeitsbilanz
Integriert man die Leistungsbilanz über die Zeit auf, erhält man die Arbeitsbilanz


:<math>\sum_i W(\vec F_i) + \sum_j W(\vec M_j) = W_{kin} + W_{rot} + W_G</math>,
:<math> \sum_i W(\vec F_i) + \sum_j W(\vec M_j) = W_{kin} + W_{rot} + W_G</math>,


wobei
wobei

Version vom 11. Juni 2008, 05:33 Uhr

Die Energiebilanz verknüpft die Energieströme bezüglich eines offenen oder geschlossenen Systems mit der Energieänderungsrate des Inhalts. Der Energieinhalt, die gespeicherte Energie, lässt sich in potentielle, Bewegungs- und innere Energie einteilen. Die Bewegungsenergie kann weiter in kinetische und Rotationsenergie und die potentielle in Gravitations- und elektrische Energie unterteilt werden

[math]\sum_i I_W{_i} = \dot W + \dot W_{kin} + \dot W_{rot}+ \dot W_G + \dot W_E[/math]

Ein geschlossenes System kann Energie zusammen mit der elektrischen Ladung, dem Impuls, dem Drehimpuls oder der Entropie austauschen. Die mittransportierte Energie heisst dann entweder elektrische, mechanische oder thermische Energie. Die beiden letztgenannten Formen nennt man auch Arbeit oder Wärme. Da ein offenes System Materie mit der Umgebung austauscht, führen die schwere Masse, die träge Masse, das Volumen und die Stoffmenge zusätzlich potentielle, kinetische, hydraulische und chemische Energie mit sich.

Seit 1905, seit Einstein die Äquivalenz von Energie und Masse gezeigt hat, darf man - streng wissenschaftlich gesehen - Masse und Energie nicht mehr getrennt bilanzieren. Was hier als eigenständige Bilanz formuliert wird, ist eigentlich nur ein relativistischer "Dreckeffekt" der Massenbilanz.

Mechanik

Die Mechanik beschreibt den Austausch von Impuls und Drehimpuls zwischen Körpern. Dabei wird nur den leitungsartigen Strömen ein Energiestrom zugeordnet. Folglich muss man die Energie, die an ein Gravitations- oder an ein elektromagnetisches Feld abgegeben wird, dem Körper selber als potentielle Energie zuschreiben. Werden die Ströme auf einen Körper bezogen, heisst der dem Impulsstrom zugeordnete Energiestrom Leistung einer Kraft und der dem Drehimpuls zugeordnete Energiestrom Leistung eines Drehmoments. Integriert man diese Leistungen über die Zeit, erhält man die Arbeit einer Kraft bzw. die Arbeit eines Drehmomentes. Oft bezeichnet man die eigentliche Energiebilanz als Leistungsbilanz und die über die Zeit aufintegrierte Energiebilanz als Arbeits- oder Energiebilanz.

Massenpunkt

Beim Massenpunkt kann die Energiebilanz direkt aus der Impulsbilanz abgeleitet werden. Nimmt man die Impulsbilanz

[math]\sum_i\vec F_i + m\vec g = \dot {\vec p} = m \dot {\vec v}[/math]

und multipliziert diese skalar mit der Geschwindigkeit, erhält man

[math]\sum_i \vec F_i \cdot \vec v = \sum_i P(\vec F_i) = m(\dot {\vec v} \cdot \vec v - \vec g \cdot \vec v) = \dot W_{kin} + \dot W_G[/math]

Eine Integration der Leistungsbilanz über die Zeit liefert die Energiebilanz

[math]\sum_i W(\vec F_i) = \Delta W_{kin} + \Delta W_G[/math]

Die kinetische Energie ist gleich Impuls mal halbe Endgeschwindigkeit

[math]W_{kin} = \vec p \cdot \frac {\vec v}{2} = \frac {m}{2} v^2[/math]

und die Gravitatitionsenergie ist gleich Masse mal Gravitationspotential

[math]W_G = m \varphi_G[/math] mit [math]\varphi_G = \int_{\vec s}^{\vec s_0} \vec g \cdot \vec{ds}[/math]

Oft betrachtet man nur den (oberflächen-)kräftefreien Massenpunkt im homogenen Gravitationsfeld. Dann verschwindet die linke Seite der Energiebilanz und die Summe aus kinetischer und potentieller Energie ist konstant. Daraus folgt die rein kinematische Gleichung

[math]\frac {v_1^2}{2} + g h_1 = \frac {v_2^2}{2} + g h_2[/math]

Bezieht man das Gravitationspotenzial auf einen der beiden Punkte, verschwindet der zugehörige Term φG = g h.

Der andere triviale Fall, der an Schulen bis zum Abwinken geübt wird, ist der kräftefreie Massenpunkt im Gravitationsfeld eines Himmelskörpers. Setzt man das Gravitationspotenzial im unendlich fernen Punkt gleich Null, erhält eine Gleichung für die Geschwindigkeit eines Satelliten im Gravitationsfeld des Himmelskörpers

[math]\frac {v_1^2}{2} - G \frac {m_H}{r_1}= \frac {v_2^2}{2} - G \frac {m_H}{r_2}[/math]

G steht für die Gravitationskonstante und r misst den Abstand vom Zentrum des Himmelskörpers.

starrer Körper

Beim starren Körper folgt die Energiebilanz aus der Impulsbilanz und der Drehimpulsbilanz. Nimmt man die Impulsbilanz

[math] \sum_i\vec F_i + m\vec g = \dot {\vec p} = m \dot {\vec v}_{MMP}[/math]

und multipliziert diese mit der Geschwindigkeit des Massenmittelpunktes, erhält man

[math] \sum_i \vec F_i \cdot \vec v_{MMP} = m(\dot {\vec v}_{MMP} \cdot \vec v_{MMP} - \vec g \cdot \vec v_{MMP}) = \dot W_{kin} + \dot W_G[/math]

Die Drehimpulsbilanz

[math] \sum_{j} \vec M_j + \sum_{i} (\vec r_i \times \vec F_i) = \dot {\vec L}[/math]

muss nun entsprechend mit dem zugehörigen Potenzial, der Winkelgeschwindigkeit, multipliziert werden

[math] \left(\sum_{j} \vec M_j\right) \cdot \vec \omega + \left(\sum_{i} (\vec r_i \times \vec F_i)\right) \cdot \vec \omega = \dot {\vec L} \cdot \vec \omega = \dot W_{rot}[/math]

Fasst man nun beide Gleichungen zusammen, erhält man die Leistungsbilanz bezüglich eines starren Körpers

[math] \sum_i P(\vec F_i) + \sum_j P(\vec M_j) = \dot W_{kin} + \dot W_G + \dot W_{rot}[/math]

Man beachte, dass

  • die Leistung einer Kraft [math]P(\vec F) = \vec F \cdot \left( \vec v_{MMP} + (\vec \omega \times \vec r)\right) = \vec F \cdot \vec v_{F}[/math] gleich der Summe aus allen drei Impulsstromstärken mal die zugehörigen Geschwindigkeits-Komponenten der Angriffsfläche (Potenzial der Translationsmechanik) ist,
  • die Leistung eines Drehmomentes [math]P(\vec M) = \vec M \cdot \vec \omega[/math] gleich der Summe aus allen drei Drehimpulsstromstärken mal die zugehörige Winkelgeschwindigkeits-Komponenten (Potenzial der Rotationsmechanik) ist,
  • der im starren Körper seitwärts fliessende Impuls eine Drehimpulsquelle erzeugt und dabei die entsprechende Energie vom Impuls auf den Drehimpuls umlädt.

Integriert man die Leistungsbilanz über die Zeit auf, erhält man die Arbeitsbilanz

[math] \sum_i W(\vec F_i) + \sum_j W(\vec M_j) = W_{kin} + W_{rot} + W_G[/math],

wobei

  • die kinetische Energie freigesetzt wird, wenn der gesamte Impuls ans Bezugssystem abgegeben wird [math]W_{kin} = \vec p \cdot \frac {\vec v_{MMP}}{2}[/math]
  • die Rotationsenergie freigesetzt wird, wenn der gesamte Drehimpuls ans Bezugssystem abgegeben wird [math]W_{rot} = \vec L \cdot \frac {\vec \omega}{2}[/math]
  • die Gravitationsenergie umgesetzt wird, wenn der Schwerpunkt auf das Bezugsniveau des Gravitationspotenzials gebracht wird. Im homogenen Gravitationsfeld fallen der Schwerpunkt und der Massenmittelpunkt eines starren Körpers zusammen [math]W_G = m \varphi_G = m g h_{MMP}[/math]

geschlossene Systeme

Geschlossene Systeme tauschen elektrische Ladung, Impuls, Drehimpuls und Entropie nur leitungsartig oder quellenartig mit der Umgebung aus. Da die Energie des quellenartigen Impulsaustausches (Gewichtskraft und Lorentzkraft) als potentielle Energie dem System zugewiesen wird, die Drehimpulsquellen ihre Energie vom querfliessenden Impuls beziehen und elektrische Ladung nicht quellenartig ausgetauscht werden kann, bleibt neben den vier Arten von zugeordneten Energieströmen nur noch die Wärmestrahlung als Transportmöglichkeit offen. Somit nimmt ie Energiebilanz die folgende Form an

[math]\sum_i I_{W_i} = \dot W[/math]

mit [math]\sum_i I_{W_i} = \sum_i \left( \vec F_i \cdot \vec v_i \right) + \sum_j \left( \vec M_j \cdot \vec \omega_j \right) + \sum_k I_k \varphi_k + \sum_l I_{Sl} T_l + I_W_{Strahlung}[/math]

und [math]\dot W = \dot W + \dot W_{kin} + \dot W_{rot}+ \dot W_G + \dot W_E[/math]

Spezialfälle:

  • ruhendes System: nur die innere Energie ändert sich und die Summe über alle Kräfte und Drehmomente ist gleich Null
  • homogenes System: die Potenzialgrössen Geschwindigkeit, Winkelgeschwindigkeit, elektrisches Potenzial und absolute Temperatur sind für alle zugehörigen Stromstärken gleich gross
  • elektrisch isoliertes System: die elektrisch "getragenen" Energieströme entfallen und die Änderungsrate des elektrischen Anteils der potenziellen Energie ist gleich Null
  • adiabatisches System: die thermischen Energieströme (den Entropieströmen zugeordnete und die Wärmestrahlung) entfallen

offene Systeme

Offene Systeme tauschen zusätzlich noch Masse, Volumen, Stoffmenge und innere Energie mit der Umgebung aus. Deshalb müssen auf der linken Seite der Energiebilanz noch fünf weitere Energieströme berücksichtigt werden

  • mitgeführte Gravitationsenergie (schwere Masse): [math]I_W = \varphi_G I_m[/math]
  • mitgeführte kinetische Energie (träge Masse): [math]I_W = {\rho_{W_{kin}} I_V= \frac {\rho}{2}v^2 I_V = \frac {v^2}{2} I_m[/math]
  • mitgeführte innere Energie: [math]I_W = w I_m = \rho_W I_V [/math]
  • hydraulisch zugeordnete Energie: [math]I_W = p I_V = \frac {p}{\rho} I_m[/math]
  • chemisch zugeordnete Energie: [math]I_W = \sum_i \mu_i I_n_i[/math]

Das Gravitationspotenzial φG ist am Ort des Massenstromes zu bestimmen und v bezieht sich auf die Geschwindigkeit des Massenstromes. Das Summenzeichen beim chemischen Energiestrom besagt, dass ein einziger konvektiver Strom mehrere Sorten von Stoffmengen transportieren kann. Tauscht ein System über mehrere Verbindungen Materie mit der Umgebung aus, sind die fünf Energieströme nochmals über alle unterschiedlichen konvektiven Transportmöglichkeiten zu summieren.

Die Stromstärke der innern Energie und des hydraulisch zugeordneten Energiestromes lassen sich mit Hilfe der Enthalpie zu einem einzigen Term zusammenfassen

[math]I_W = \left(\frac {p}{\rho} + w \right) I_m = \left(p v + w \right) I_m = h I_m[/math]

Hier steht v für spezifisches Volumen (Volumen pro Masse oder reziproke Dichte) und h für spezifische Enthalpie.